Smart Camera Reconfiguration in Assisted Home Environments for Elderly Care

  • Krishna Reddy Konda
  • Andrea RosaniEmail author
  • Nicola Conci
  • Francesco G. B. De Natale
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)


Researchers of different fields have been involved in human behavior analysis during the last years. The successful recognition of human activities from video analysis is still a challenging problem. Within this context, applications targeting elderly care are of considerable interest both for public and industrial bodies, especially considering the aging society we are living in. Ambient intelligence (AmI) technologies, intended as the possibility of automatically detecting and reacting to the status of the environment and of the persons, is probably the major enabling factor. AmI technologies require suitable networks of sensors and actuators, as well as adequate processing and communication technologies. In this paper we propose an innovative solution based on a real time analysis of video with application in the field of elderly care. The system performs anomaly detection and proposes the automatic reconfiguration of the camera network for better monitoring of the ongoing event. The developed framework is tested on a publicly available dataset and has also been deployed and evaluated in a real environment.


Elderly care Real time video analysis Automatic camera reconfiguration 


  1. 1.
    Anderson, D., Keller, J.M., Skubic, M., Chen, X., He, Z.: Recognizing falls from silhouettes. In: Engineering in Medicine and Biology Society, 2006. EMBS 2006. In: 28th Annual International Conference of the IEEE, pp. 6388–6391. IEEE (2006)Google Scholar
  2. 2.
    Auvinet, E., Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Multiple cameras fall dataset. DIRO-Université de Montréal, Tech. Rep 1350 (2010)Google Scholar
  3. 3.
    Borges, P., Conci, N., Cavallaro, A.: Video-based human behavior understanding: A survey. IEEE Transactions on Circuits and Systems for Video Technology 23(11), 1993–2008 (2013)CrossRefGoogle Scholar
  4. 4.
    Cardinaux, F., Bhowmik, D., Abhayaratne, C., Hawley, M.S.: Video based technology for ambient assisted living: A review of the literature. Journal of Ambient Intelligence and Smart Environments 3(3), 253–269 (2011)Google Scholar
  5. 5.
    Chen, C.H., Yao, Y., Page, D., Abidi, B., Koschan, A., Abidi, M.: Heterogeneous fusion of omnidirectional and ptz cameras for multiple object tracking. IEEE Transactions on Circuits and Systems for Video Technology 18(8), 1052–1063 (2008)CrossRefGoogle Scholar
  6. 6.
    Climent-Pérez, A., Flórez-Revuelta, P., Chaaraoui, F.: A review on vision techniques applied to human behaviour analysis for ambient-assisted living. Expert Systems with Applications 39(12), 10873–10888 (2012)CrossRefGoogle Scholar
  7. 7.
    Open source multiple contributions, O.S.: Command line tool for transferring data with url syntax, March 2014.
  8. 8.
    Open source multiple contributions, O.S.: Trans standard multimedia framework for media manipulation, March 2014.
  9. 9.
    Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Probabilistic posture classification for human-behavior analysis. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 35(1), 42–54 (2005)CrossRefGoogle Scholar
  10. 10.
    Feng, W., Liu, R., Zhu, M.: Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera. Signal, Image and Video Processing, pp. 1–10 (2014)Google Scholar
  11. 11.
    Foroughi, H., Aski, B.S., Pourreza, H.: Intelligent video surveillance for monitoring fall detection of elderly in home environments. In: 2008 11th International Conference on Computer and Information Technology. ICCIT 2008, pp. 219–224. IEEE (2008)Google Scholar
  12. 12.
    Hazelhoff, L., Han, J., de With, P.H.N.: Video-based fall detection in the home using principal component analysis. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 298–309. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    HHI.: H.264 reference decoder from heinrich hertz institute, January 2014.
  14. 14.
    Katz, S., Downs, T.D., Cash, H.R., Grotz, R.C.: Progress in development of the index of adl. The gerontologist 10(1 Part 1), pp. 20–30 (1970)Google Scholar
  15. 15.
    Lin, C.W., Ling, Z.H.: Automatic fall incident detection in compressed video for intelligent homecare. In: 2007 Proceedings of 16th International Conference on Computer Communications and Networks. ICCCN 2007, pp. 1172–1177. IEEE (2007)Google Scholar
  16. 16.
    Micheloni, C., Rinner, B., Foresti, G.L.: Video analysis in pan-tilt-zoom camera networks. IEEE Signal Processing Magazine 27(5), 78–90 (2010)CrossRefGoogle Scholar
  17. 17.
    Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: Principles and approaches. Neurocomputing 100(0), 144–152 (2013). (Special issue: Behaviours in video)Google Scholar
  18. 18.
    Murray, D., Basu, A.: Motion tracking with an active camera. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(5), 449–459 (1994)CrossRefGoogle Scholar
  19. 19.
    Nait-Charif, H., McKenna, S.J.: Activity summarisation and fall detection in a supportive home environment. In: 2004 Proceedings of the 17th International Conference on Pattern Recognition. ICPR 2004. vol. 4, pp. 323–326. IEEE (2004)Google Scholar
  20. 20.
    Quaritsch, M., Kreuzthaler, M., Rinner, B., Bischof, H., Strobl, B.: Autonomous multicamera tracking on embedded smart cameras. EURASIP Journal on Embedded Systems 2007(1), 35–35 (2007)CrossRefGoogle Scholar
  21. 21.
    Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE journal of biomedical and health informatics 17(3), 579–590 (2013)CrossRefGoogle Scholar
  22. 22.
    Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Fall detection from human shape and motion history using video surveillance. In: 21st International Conference on 2007 Advanced Information Networking and Applications Workshops, AINAW’07. vol. 2, pp. 875–880. IEEE (2007)Google Scholar
  23. 23.
    Scotti, G., Marcenaro, L., Coelho, C., Selvaggi, F., Regazzoni, C.: Dual camera intelligent sensor for high definition 360 degrees surveillance. IEE Proceedings-Vision, Image and Signal Processing 152(2), 250–257 (2005)CrossRefGoogle Scholar
  24. 24.
    Van Kasteren, T., Englebienne, G., Krse, B.: An activity monitoring system for elderly care using generative and discriminative models. Personal and Ubiquitous Computing 14(6), 489–498 (2010)CrossRefGoogle Scholar
  25. 25.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the h. 264/avc video coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 560–576 (2003)CrossRefGoogle Scholar
  26. 26.
    Yu, X.: Approaches and principles of fall detection for elderly and patient. In: 2008 10th International Conference on e-health Networking, Applications and Services. HealthCom 2008, pp. 42–47, July 2008Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Krishna Reddy Konda
    • 1
  • Andrea Rosani
    • 1
    Email author
  • Nicola Conci
    • 1
  • Francesco G. B. De Natale
    • 1
  1. 1.Department of Information Engineering and Computer ScienceUniversity of TrentoTrentoItaly

Personalised recommendations