Refining Mitochondria Segmentation in Electron Microscopy Imagery with Active Surfaces

  • Anne JorstadEmail author
  • Pascal Fua
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)


We present an active surface-based method for refining the boundary surfaces of mitochondria segmentation data. We exploit thefact that mitochondria have thick dark membranes, so referencing the image data at the inner membrane can help drive a more accurate delineation of the outer membrane surface. Given the initial boundary prediction from a machine learning-based segmentation algorithm as input, we compare several cost functions used to drive an explicit update scheme to locally refine 3D mesh surfaces, and results are presented on electron microscopy imagery. Our resulting surfaces are seen to fit very accurately to the mitochondria membranes, more accurately even than the available hand-annotations of the data.


Energy Function Image Gradient Initial Segmentation Mitochondrion Membrane Laplacian Smoothing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker, C., Ali, K., Knott, G., Fua, P.: Learning context cues for synapse segmentation in EM volumes. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 585–592. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  2. 2.
    Becker, C., Ali, K., Knott, G., Fua, P.: Learning Context Cues for Synapse Segmentation. TMI 32(10), 1864–1877 (2013)Google Scholar
  3. 3.
    Caselles, V., Kimme, R., Sapiro, G.: Geodesic active contours. In: Proceedings Fifth International Conference on Computer Vision, pp. 694–699 (1995)Google Scholar
  4. 4.
    Chan, T.F., Vese, L.A.: Active contours without edges. In: TIP, pp. 266–277 (2001)Google Scholar
  5. 5.
    He, L., Peng, Z., Everding, B., Wang, X., Han, C.Y., Weiss, K.L., Wee, W.G.: A Comparative Study of Deformable Contour Methods on Medical Image Segmentation. Image and Vision Computing 26(2), 141–163 (2008)CrossRefGoogle Scholar
  6. 6.
    Kreshuk, A., Straehle, C.N., Sommer, C., Koethe, U., Knott, G., Hamprecht, F.: Automated segmentation of synapses in 3D EM data. In: ISBI (2011)Google Scholar
  7. 7.
    Laptev, D., Vezhnevets, A., Dwivedi, S., Buhmann, J.M.: Anisotropic ssTEM image segmentation using dense correspondence across sections. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 323–330. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Leventon, M.E., Grimson, W.E., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR, pp. 316–323 (2000)Google Scholar
  9. 9.
    Lorensen, W., Cline, H.: Marching cubes: a high resolution 3D surface construction algorithm. In: SIGGRAPH, pp. 163–169 (1987)Google Scholar
  10. 10.
    Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: CVPR, June 2013Google Scholar
  11. 11.
    Prevost, R., Cuingnet, R., Mory, B., Cohen, L.D., Ardon, R.: Incorporating shape variability in image segmentation via implicit template deformation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 82–89. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Vazquez-Reina, A., Miller, E., Pfister, H.: Multiphase geometric couplings for the segmentation of neuronal processes. In: CVPR, pp. 2020–2027 (2009)Google Scholar
  13. 13.
    Vollmer, J., Mencl, R., Mueller, H.: Improved laplacian smoothing of noisy surface meshes. Computer Graphics Forum. 18, 131–138 (1999). Wiley Online LibraryCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations