Advertisement

Hybrid Consensus Learning for Legume Species and Cultivars Classification

  • Mónica G. LareseEmail author
  • Pablo M. Granitto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)

Abstract

In this work we propose an automatic method aimed at classifying five legume species and varieties using leaf venation features. Firstly, we segment the leaf veins and measure several multiscale morphological features on the vein segments and the areoles. Next, we build a hybrid consensus of experts formed by five different automatic classifiers to perform the classification using the extracted features. We propose to use two strategies in order to assign the importance to the votes of the algorithms in the consensus. The first one is considering all the algorithms equally important. The second one is based on the accuracy of the standalone classifiers. The performance of both consensus classifiers show to outperform the standalone classification algorithms in the five class recognition task.

Keywords

Legume and variety classification Venation images Consensus learning 

References

  1. 1.
    Agarwal, G., Ling, H., Jacobs, D., Shirdhonkar, S., Kress, W., Russell, R., Belhumeur, P., Dixit, N., Feiner, S., Mahajan, D., Sunkavalli, K., White, S.: First Steps Toward an Electronic Field Guide for Plants. Taxon, Journal of the International Association for Plant Taxonomy 55, 597–610 (2006)Google Scholar
  2. 2.
    Bama, B.S., Valli, S.M., Raju, S., Kumar, V.A.: Content based leaf image retrieval (CBLIR) using shape, color and texture features. Indian Journal of Computer Science and Engineering 2(2), 202–211 (2011)Google Scholar
  3. 3.
    Benediktsson, J.A., Swain, P.H.: Consensus theoretic classification methods. IEEE Trans. Systems, Man Cybernet. 22, 688–704 (1992)CrossRefzbMATHGoogle Scholar
  4. 4.
    Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Neto Camargo, J., Meyer, G.E., Jones, D.D., Samal, A.K.: Plant species identification using Elliptic Fourier leaf shape analysis. Computers and Electronics in Agriculture 50, 121–134 (2006)CrossRefGoogle Scholar
  6. 6.
    Chaki, J., Parekh, R.: Designing an automated system for plant leaf recognition. International Journal of Advances in Engineering & Technology 2(1), 149–158 (2012)Google Scholar
  7. 7.
    Du, J.X., Wang, X.F., Zhang, G.J.: Leaf shape based plant species recognition. Applied Mathematics and Computation 185(2), 883–893 (2007), special Issue on Intelligent Computing Theory and MethodologyGoogle Scholar
  8. 8.
    Du, J.X., Zhai, C.M., Wang, Q.P.: Recognition of plant leaf image based on fractal dimension features. Neurocomputing 116, 150–156 (2013)CrossRefGoogle Scholar
  9. 9.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Golzarian, M.R., Frick, R.A.: Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis. Plant Methods 7, 28 (2011)CrossRefGoogle Scholar
  11. 11.
    Hastie, T., Buja, A., Tibshirani, R.: Penalized discriminant analysis. Ann. Statist. 23(1), 73–102 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer (2009)Google Scholar
  13. 13.
    Im, C., Nishida, H., Kunii, T.L.: Recognizing Plant Species by Leaf Shapes-A Case Study of the Acer Family. In: International Conference on Pattern Recognition, vol. 2, p. 1171 (1998)Google Scholar
  14. 14.
    Kuncheva, L.I., Bezdek, J.C., Duin, R.P.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34(2), 299–314 (2001). http://www.sciencedirect.com/science/article/pii/S003132039900223X
  15. 15.
    Larese, M.G., Bayá, A.E., Craviotto, R.M., Arango, M.R., Gallo, C., Granitto, P.M.: Multiscale recognition of legume varieties based on leaf venation images. Expert Systems with Applications 41(10), 4638–4647 (2014), http://www.sciencedirect.com/science/article/pii/S0957417414000529
  16. 16.
    Larese, M.G., Craviotto, R.M., Arango, M.R., Gallo, C., Granitto, P.M.: Legume identification by leaf vein images classification. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 447–454. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  17. 17.
    Larese, M.G., Namías, R., Craviotto, R.M., Arango, M.R., Gallo, C., Granitto, P.M.: Automatic classification of legumes using leaf vein image features. Pattern Recognition 47(1), 158–168 (2014)CrossRefGoogle Scholar
  18. 18.
    Park, J., Hwang, E., Nam, Y.: Utilizing venation features for efficient leaf image retrieval. J. Syst. Softw. 81(1), 71–82 (2008)CrossRefGoogle Scholar
  19. 19.
    Price, C.A., Symonova, O., Mileyko, Y., Hilley, T., Weitz, J.S.: Leaf Extraction and Analysis Framework Graphical User Interface: Segmenting and Analyzing the Structure of Leaf Veins and Areoles. Plant Physiology 155, 236–245 (2011)CrossRefGoogle Scholar
  20. 20.
    Pydipati, R., Burks, T.F., Lee, W.S.: Identification of citrus disease using color texture features and discriminant analysis. Computers and Electronics in Agriculture 52, 49–59 (2006)CrossRefGoogle Scholar
  21. 21.
    Schapire, R.E.: The Strength of Weak Learnability. Mach. Learn. 5(2), 197–227 (1990)Google Scholar
  22. 22.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer-Verlag (1999)Google Scholar
  23. 23.
    Vapnik, V.: The nature of statistical learning theory. Springer-Verlag (1995)Google Scholar
  24. 24.
    Xu, L., Krzyzak, A., Suen, C.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man and Cybernetics 22(3), 418–435 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CIFASIS, French Argentine International Center for Information and Systems SciencesUAM (France) / UNR-CONICET (Argentina)RosarioArgentina

Personalised recommendations