Advertisement

TEAChER: TEach AdvanCEd Reconfigurable Architectures and Tools

  • Kostas Siozios
  • Peter Figuli
  • Harry Sidiropoulos
  • Carsten Tradowsky
  • Dionysios Diamantopoulos
  • Konstantinos Maragos
  • Shalina Percy Delicia
  • Dimitrios Soudris
  • Jürgen Becker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9040)

Abstract

This paper presents an on-going collaboration project, named TEAChER for providing breakthrough knowledge to students and young researchers on reconfigurable computing and advanced digital systems. The project is intended to cover topics like architectures and capabilities of field-programmable gate arrays, languages for the specification, modeling, and synthesis of digital systems. Furthermore design methods, computer-aided design tools, reconfiguration techniques and practical applications are taught. The virtual laboratory enables the remote students to easily interact with a set of reconfigurable platforms in order to control experiments through the internet. By using the user-friendly interface, the remote user can change predefined system parameters and observe system response either in textual, or graphical format. In addition such a virtual laboratory includes a booking system, which enables remote users to conduct experiments in advance.

Keywords

Engineering education Reconfigurable computing Virtual prototyping 3-D Architecture CAD Algorithms FPGA Prototyping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diamantopoulos, D., Siozios, K., Soudris, D.: Framework for performing rapid evaluation of 3d socs. Electronics Letters 48 (June 2012)Google Scholar
  2. 2.
    HIRST: Helmholtz International Research School for Teratronics. http://www.teratronics.kit.edu
  3. 3.
    Huebner, M., Figuli, P., Girardey, R., Soudris, D., Siozios, K., Becker, J.: A heterogeneous multicore system on chip with run-time reconfigurable virtual fpga architecture. In: Parallel and Distributed Processing Workshops (IPDPSW) (2011)Google Scholar
  4. 4.
    Magen, N., Kolodny, A., Weiser, U., Shamir, N.: Interconnect-power dissipation in a microprocessor. In: SLIP 2004 Proceedings of the 2004 International Workshop on System Level Interconnect Prediction, ACM, New York, NY, USA (2004)Google Scholar
  5. 5.
    MEANDER. 2D and 3D MEANDER Framework. http://proteas.microlab.ntua.gr
  6. 6.
    Pavlidis, V.F., Friedman, E.G.: Three-dimensional Integrated Circuit Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2009)Google Scholar
  7. 7.
    Sidiropoulos, H., Siozios, K., Figuli, P., Soudris, D., Huebner, M., Becker, J.: Jitpr: A framework for supporting fast application’s implementation onto fpgas. ACM Trans. Reconfigurable Technol. Syst. 6(2) (August 2013)Google Scholar
  8. 8.
    Sidiropoulos, H., Siozios, K., Soudris, D.: A framework for architecture-level exploration of communication intensive applications onto 3-d fpgas. In: 2011 International Conference on Field Programmable Logic and Applications (FPL) (2011)Google Scholar
  9. 9.
    Sidiropoulos, H., Siozios, K., Soudris, D.: On supporting rapid exploration of memory hierarchies onto fpgas. J. Syst. Archit. 59(2) (February 2013)Google Scholar
  10. 10.
    Sidiropoulos, H., Siozios, K., Soudris, D.: A novel 3-d fpga architecture targeting communication intensive applications. J. Syst. Archit. 60(1) (January 2014)Google Scholar
  11. 11.
    Siozios, K., Pavlidis, V.F., Soudris, D.: A novel framework for exploring 3-d fpgas with heterogeneous interconnect fabric. ACM Trans. Reconfigurable Technol. Syst. 5(1) (March 2012)Google Scholar
  12. 12.
    Siozios, K., Rodopoulos, D., Soudris, D.: On supporting rapid thermal analysis. Computer Architecture Letters 10(2) (July 2011)Google Scholar
  13. 13.
    Siozios, K., Soudris, D.: A low-cost fault tolerant solution targeting commercial fpga devices. J. Syst. Archit. 59(10) (November 2013)Google Scholar
  14. 14.
    Siozios, K., Soudris, D., Huebner, M.: A framework for customizing virtual 3-d reconfigurable platforms at run-time. In: IPDPSW 2014 Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, IEEE Computer Society (2014)Google Scholar
  15. 15.
    Siozios, K., Soudris, D., Huebner, M.: A framework for customizing virtual 3-d reconfigurable platforms at run-time. In: IPDPSW 2014 Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, pp. 183–188. IEEE Computer Society, Washington, DC, USA (2014)Google Scholar
  16. 16.
    Soudris, D., Nikolaidis, S., Siskos, S., Tatas, K., Siozios, K., Koutroumpezis, G., Vasiliadis, N., Kalenteridis, V., Pournara, H., Pappas, I., Thanailakis, A.: Amdrel: a novel low-energy fpga architecture and supporting cad tool design flow. In: Proceedings of the Asia an South Pacific Design Automation Conference (2005)Google Scholar
  17. 17.
    Tatas, K., Siozios, K., Soudris, D., Jantsch, A.: Designing 2D and 3D Network-on-Chip Architectures. Springer (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kostas Siozios
    • 1
  • Peter Figuli
    • 2
  • Harry Sidiropoulos
    • 1
  • Carsten Tradowsky
    • 2
  • Dionysios Diamantopoulos
    • 1
  • Konstantinos Maragos
    • 1
  • Shalina Percy Delicia
    • 2
  • Dimitrios Soudris
    • 1
  • Jürgen Becker
    • 2
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensAthinaGreece
  2. 2.Institute for Information Processing TechnologiesKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations