Modular Acquisition and Stimulation System for Timestamp-Driven Neuroscience Experiments

  • Paulo Matias
  • Rafael T. Guariento
  • Lirio O. B. de Almeida
  • Jan F. W. Slaets
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9040)


Dedicated systems are fundamental for neuroscience experimental protocols that require timing determinism and synchronous stimuli generation. We developed a data acquisition and stimuli generator system for neuroscience research, optimized for recording timestamps from up to 6 spiking neurons and entirely specified in a high-level Hardware Description Language (HDL). Despite the logic complexity penalty of synthesizing from such a language, it was possible to implement our design in a low-cost small reconfigurable device. Under a modular framework, we explored two different memory arbitration schemes for our system, evaluating both their logic element usage and resilience to input activity bursts. One of them was designed with a decoupled and latency insensitive approach, allowing for easier code reuse, while the other adopted a centralized scheme, constructed specifically for our application. The usage of a high-level HDL allowed straightforward and stepwise code modifications to transform one architecture into the other. The achieved modularity is very useful for rapidly prototyping novel electronic instrumentation systems tailored to scientific research.


Spiking neurons Data acquisition Precise timing Resource arbitration Latency insensitive Modular design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dayan, P., Abbott, L.F.: Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press (2005)Google Scholar
  2. 2.
    Lewicki, M.S.: A review of methods for spike sorting: the detection and classification of neural action potentials. Network-Comp. Neural 9(4), R53–R78 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brochini, L., Carelli, P.V., Pinto, R.D.: Single synapse information coding in intraburst spike patterns of central pattern generator motor neurons. J. Neurosci. 31(34), 12297–12306 (2011)CrossRefGoogle Scholar
  4. 4.
    Spavieri Jr., D.L., Eichner, H., Borst, A.: Coding efficiency of fly motion processing is set by firing rate, not firing precision. PLoS Comput. Biol. 6(7), e1000860 (2010)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bolzon, D.M., Nordström, K., O’Carroll, D.C.: Local and large-range inhibition in feature detection. J. Neurosci. 29(45), 14143–14150 (2009)CrossRefGoogle Scholar
  6. 6.
    Rokem, A., Watzl, S., Gollisch, T., Stemmler, M., Herz, A.V.M., Samengo, I.: Spike-timing precision underlies the coding efficiency of auditory receptor neurons. J. Neurophysiol. 95(4), 2541–2552 (2006)CrossRefGoogle Scholar
  7. 7.
    Nikhil, R.: Bluespec system verilog: efficient, correct RTL from high level specifications. In: MEMOCODE 2004, pp. 69–70, June 2004Google Scholar
  8. 8.
    Matias, P.: Low-cost modular acquisition and stimulation system for neuroscience, July 2014.
  9. 9.
    Gruian, F., Westmijze, M.: BluEJAMM: a Bluespec embedded Java architecture with memory management. In: SYNASC 2007, pp. 459–466, September 2007Google Scholar
  10. 10.
    Meeus, W., Van Beeck, K., Goedemé, T., Meel, J., Stroobandt, D.: An overview of today’s high-level synthesis tools. Des. Autom. Embed. Syst. 16(3), 31–51 (2012)CrossRefGoogle Scholar
  11. 11.
    Malik, J.S., Palazzari, P., Hemani, A.: Effort, resources, and abstraction vs performance in high-level synthesis: finding new answers to an old question. SIGARCH Comput. Archit. News 40(5), 64–69 (2012)CrossRefGoogle Scholar
  12. 12.
    Arvind, Nikhil, R.S., Rosenband, D.L., Dave, N.: High-level synthesis: an essential ingredient for designing complex ASICs. In: ICCAD 2004, pp. 775–782. IEEE Computer Society, Washington, DC (2004)Google Scholar
  13. 13.
    de Almeida, L.O.B., Slaets, J.F.W., Köberle, R.: VSImG: a high frame rate bitmap based display system for neuroscience research. Neurocomputing 74(10), 1762–1768 (2011)CrossRefGoogle Scholar
  14. 14.
    Nemenman, I., Lewen, G.D., Bialek, W., de Ruyter van Steveninck, R.R.: Neural coding of natural stimuli: information at sub-millisecond resolution. PLoS Comput. Biol. 4(3), e1000025 (2008)CrossRefGoogle Scholar
  15. 15.
    Rosenband, D.L.: The ephemeral history register: flexible scheduling for rule-based designs. In: MEMOCODE 2004, pp. 189–198, June 2004Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paulo Matias
    • 1
  • Rafael T. Guariento
    • 1
  • Lirio O. B. de Almeida
    • 1
  • Jan F. W. Slaets
    • 1
  1. 1.São Carlos Institute of PhysicsUniversity of São PauloSão CarlosBrazil

Personalised recommendations