Advertisement

Measuring Failure Probability of Coarse and Fine Grain TMR Schemes in SRAM-based FPGAs Under Neutron-Induced Effects

  • Lucas A. TambaraEmail author
  • Felipe Almeida
  • Paolo Rech
  • Fernanda L. Kastensmidt
  • Giovanni Bruni
  • Christopher Frost
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9040)

Abstract

TMR is the most widely used technique to increase the reliability of SRAM-based FPGAs used in safety-critical applications. In this paper we evaluate experimentally the realistic effectiveness of several TMR schemes implemented with different levels of granularity. We measure and compare the dynamic cross-section of the TMRd circuits as well as number of accumulated bit-flips that cause a functional error. Additionally, we analyze and evaluate the effectiveness of both partial and full reconfiguration in both coarse and fine grained TMR schemes. As experimental results demonstrate, coarse-grained TMR efficiency and efficacy may be higher than a fine-grained TMR when partial reconfiguration is available.

Keywords

FPGA TMR Fault tolerance Reliability Radiation effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dodd, P.E., Massengill, L.W.: Basic Mechanism and Modeling of Single-Event Upset in Digital Microelectronics. IEEE Transactions on Nuclear Science 50(3), 583–602 (2003)CrossRefGoogle Scholar
  2. 2.
    Quinn, H., Morgan, K., Graham, P., Krone, J., Caffrey, M.: Static proton and heavy ion testing of the xilinx virtex-5 device. In: 2007 IEEE Radiation Effects Data Workshop, pp. 177–184. IEEE, New York (2007)Google Scholar
  3. 3.
    Manuzzato, A., Gerardin, S., Paccagnella, A., Sterpone, L., Violante, M.: Effectiveness of TMR-Based Techniques to Mitigate Alpha-Induced SEU Accumulation in Commercial SRAM-Based FPGAs. IEEE Transactions on Nuclear Science 55(4), 1968–1973 (2008)CrossRefGoogle Scholar
  4. 4.
    Niknahad, M., Sander, O., Becker, J.: Fine grain fault tolerance - a key to high reliability for FPGAs in space. In: 2012 IEEE Aerospace Conference, pp. 1–10. IEEE, New York (2012)Google Scholar
  5. 5.
    Kastensmidt, F.L., Sterpone, L., Carro, L., Reorda, M.S.: On the optimal design of triple modular redundancy logic for SRAM-based FPGAs. In: 2005 Design, Automation and Test in Europe, pp. 1290–1295. IEEE, New York (2005)Google Scholar
  6. 6.
    Wang, X.: Partitioning triple modular redundancy for single event upset mitigation in FPGA. In: 2010 International Conference on E-Product E-Service and E-Entertainment, pp. 1–4. IEEE, New York (2010)Google Scholar
  7. 7.
    Single-Event Upset Mitigation Selection Guide. http://www.xilinx.com/
  8. 8.
    Berg, M., Poivey, C., Petrick, D., Espinosa, D., Lesea, A., LaBel, K.A., Friendlich, M., Kim, H., Phan, A.: Effectiveness of Internal Versus External SEU Scrubbing Mitigation Strategies in a Xilinx FPGA: Design, Test, and Analysis. IEEE Transactions on Nuclear Science 55(4), 2259–2266 (2008)CrossRefGoogle Scholar
  9. 9.
    Ostler, P.S., Caffrey, M.P., Gibelyou, D.S., Graham, P.S., Morgan, K.S., Pratt, B.H., Quinn, H.M., Wirthlin, M.J.: SRAM FPGA Reliability Analysis for Harsh Radiation Environments. IEEE Transactions on Nuclear Science 56(6), 3519–3526 (2009)CrossRefGoogle Scholar
  10. 10.
    Swartzlander, E.E., Young, W.W., Gibelyou, D.S., Joseph, S.J.: A Radix 4 Delay Commutator for Fast Fourier Transform Processor Implementation. IEEE Journal of Solid-state Circuits SC–19(5), 702–709 (1984)CrossRefGoogle Scholar
  11. 11.
    Virtex-5 Family Overview. http://www.xilinx.com/
  12. 12.
    Violante, M., Sterpone, L., Manuzzato, A., Gerardin, S., Rech, P., Bagatin, M., Paccagnella, A., Andreani, C., Gorini, G., Pietropaolo, A., Cardarilli, G., Pontarelli, S., Frost, C.: A New Hardware/Software Platform and a New 1/E Neutron Source for Soft Error Studies: Testing FPGAs at the ISIS Facility. IEEE Transactions on Nuclear Science 54(4), 1184–1189 (2007)CrossRefGoogle Scholar
  13. 13.
    Tarrillo, J., Escobar, F.A., Kastensmidt, F.L., Valderrama, C.: Dynamic partial reconfiguration manager. In: 5th IEEE Latin American Symposium on Circuits and Systems, pp. 1–4. IEEE, New York (2014)Google Scholar
  14. 14.
    Device Reliability Report First Quarter 2014. http://www.xilinx.com/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lucas A. Tambara
    • 1
    Email author
  • Felipe Almeida
    • 1
  • Paolo Rech
    • 1
  • Fernanda L. Kastensmidt
    • 1
  • Giovanni Bruni
    • 2
  • Christopher Frost
    • 3
  1. 1.Instituto de Informáatica, PGMICROUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Dipartimento di Ingegneria dell’InformazioneUniversitá di PadovaPadovaItaly
  3. 3.Rutherford Appleton LaboratoryISISDidcotUK

Personalised recommendations