Advertisement

A Novel Visual Word Co-occurrence Model for Person Re-identification

  • Ziming ZhangEmail author
  • Yuting Chen
  • Venkatesh Saligrama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

Person re-identification aims to maintain the identity of an individual in diverse locations through different non-overlapping camera views. The problem is fundamentally challenging due to appearance variations resulting from differing poses, illumination and configurations of camera views. To deal with these difficulties, we propose a novel visual word co-occurrence model. We first map each pixel of an image to a visual word using a codebook, which is learned in an unsupervised manner. The appearance transformation between camera views is encoded by a co-occurrence matrix of visual word joint distributions in probe and gallery images. Our appearance model naturally accounts for spatial similarities and variations caused by pose, illumination & configuration change across camera views. Linear SVMs are then trained as classifiers using these co-occurrence descriptors. On the VIPeR [1] and CUHK Campus [2] benchmark datasets, our method achieves 83.86% and 85.49% at rank-15 on the Cumulative Match Characteristic (CMC) curves, and beats the state-of-the-art results by 10.44% and 22.27%.

Keywords

Visual Word Appearance Model Reproduce Kernel Hilbert Space Camera View Codebook Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: 10th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS) (September 2007)Google Scholar
  2. 2.
    Zhao, R., Ouyang, W., Wang, X.: Person re-identification by salience matching. In: ICCV (2013)Google Scholar
  3. 3.
    Vezzani, R., Baltieri, D., Cucchiara, R.: People reidentification in surveillance and forensics: A survey. ACM Comput. Surv. 46(2), 29:1–29:37 (2013)Google Scholar
  4. 4.
    Banerjee, P., Nevatia, R.: Learning neighborhood cooccurrence statistics of sparse features for human activity recognition. In: AVSS, pp. 212–217 (2011)Google Scholar
  5. 5.
    Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-occurrence, location and appearance. In: CVPR (June 2008)Google Scholar
  6. 6.
    Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Graph Cut Based Inference with Co-occurrence Statistics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 239–253. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Smola, A.J., Gretton, A., Song, L., Schölkopf, B.: A Hilbert Space Embedding for Distributions. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 13–31. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Jebara, T., Kondor, R., Howard, A.: Probability product kernels. JMLR 5, 819–844 (2004)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Bird, N.D., Masoud, O., Papanikolopoulos, N.P., Isaacs, A.: Detection of loitering individuals in public transportation areas. Trans. Intell. Transport. Sys. 6(2), 167–177 (2005)CrossRefGoogle Scholar
  10. 10.
    Gheissari, N., Sebastian, T.B., Hartley, R.: Person reidentification using spatiotemporal appearance. CVPR 2, 1528–1535 (2006)Google Scholar
  11. 11.
    Bazzani, L., Cristani, M., Perina, A., Murino, V.: Multiple-shot person re-identification by chromatic and epitomic analyses. Pattern Recogn. Lett. 33(7), 898–903 (2012)CrossRefGoogle Scholar
  12. 12.
    Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: CVPR, pp. 3586–3593 (2013)Google Scholar
  13. 13.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR, pp. 2360–2367 (2010)Google Scholar
  14. 14.
    Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Prosser, B., Zheng, W.S., Gong, S., Xiang, T., Mary, Q.: Person re-identification by support vector ranking. In: BMVC, vol. 1, p. 5 (2010)Google Scholar
  16. 16.
    Bauml, M., Stiefelhagen, R.: Evaluation of local features for person re-identification in image sequences. In: AVSS, pp. 291–296 (2011)Google Scholar
  17. 17.
    Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Multiple-shot human re-identification by mean riemannian covariance grid. In: AVSS, pp. 179–184 (2011)Google Scholar
  18. 18.
    Ma, B., Su, Y., Jurie, F.: Bicov: a novel image representation for person re-identification and face verification. In: BMVC (2012)Google Scholar
  19. 19.
    Liu, C., Gong, S., Loy, C.C., Lin, X.: Person Re-identification: What Features Are Important? In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 391–401. Springer, Heidelberg (2012)Google Scholar
  20. 20.
    Nguyen, V.-H., Nguyen, K., Le, D.-D., Duong, D.A., Satoh, S.: Person Re-identification Using Deformable Part Models. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013, Part III. LNCS, vol. 8228, pp. 616–623. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian Recognition with a Learned Metric. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 501–512. Springer, Heidelberg (2011)Google Scholar
  22. 22.
    Li, W., Zhao, R., Wang, X.: Human Reidentification with Transferred Metric Learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 31–44. Springer, Heidelberg (2013)Google Scholar
  23. 23.
    Mignon, A., Jurie, F.: PCCA: a new approach for distance learning from sparse pairwise constraints. In: CVPR, pp. 2666–2672 (2012)Google Scholar
  24. 24.
    Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: CVPR, pp. 649–656 (2011)Google Scholar
  25. 25.
    Porikli, F.: Inter-camera color calibration by correlation model function. In: ICIP, vol 2. pp. II-133 (2003)Google Scholar
  26. 26.
    Javed, O., Shafique, K., Rasheed, Z., Shah, M.: Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views. Comput. Vis. Image Underst. 109(2), 146–162 (2008)CrossRefGoogle Scholar
  27. 27.
    Zheng, W.S., Gong, S., Xiang, T.: Re-identification by relative distance comparison. IEEE TPAMI 35(3), 653–668 (2013)CrossRefGoogle Scholar
  28. 28.
    Pedagadi, S., Orwell, J., Velastin, S., Boghossian, B.: Local fisher discriminant analysis for pedestrian re-identification. In: CVPR, pp. 3318–3325 (2013)Google Scholar
  29. 29.
    van Gemert, J., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1271–1283 (2010)CrossRefGoogle Scholar
  30. 30.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. TPAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  31. 31.
    Hariharan, B., Malik, J., Ramanan, D.: Discriminative Decorrelation for Clustering and Classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 459–472. Springer, Heidelberg (2012)Google Scholar
  32. 32.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. JMLR 9, 1871–1874 (2008)zbMATHGoogle Scholar
  33. 33.
    Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: PETS, pp. 47–47 (2007)Google Scholar
  34. 34.
    Li, W., Wang, X.: Locally aligned feature transforms across views. In: CVPR, pp. 3594–3601 (June 2013)Google Scholar
  35. 35.
    Zhang, Z., Warrell, J., Torr, P.H.S.: Proposal generation for object detection using cascaded ranking svms. In: IEEE CVPR, pp. 1497–1504 (2011)Google Scholar
  36. 36.
    Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.H.S.: Bing: Binarized normed gradients for objectness estimation at 300fps. In: IEEE CVPR (2014)Google Scholar
  37. 37.
    Zhang, Z., Li, Z.N., Drew, M.S.: Adamkl: A novel biconvex multiple kernel learning approach. In: IEEE 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2126–2129 (2010)Google Scholar
  38. 38.
    Zhang, Z., Sturgess, P., Sengupta, S., Crook, N., Torr, P.H.: Efficient discriminative learning of parametric nearest neighbor classifiers. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2232–2239. IEEE (2012)Google Scholar
  39. 39.
    Zhang, Z., Ladicky, L., Torr, P., Saffari, A.: Learning anchor planes for classification. In: Advances in Neural Information Processing Systems, pp. 1611–1619 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ziming Zhang
    • 1
    Email author
  • Yuting Chen
    • 1
  • Venkatesh Saligrama
    • 1
  1. 1.Boston UniversityBostonUSA

Personalised recommendations