Advertisement

High Dynamic Range Imaging System for the Visually Impaired

  • Ahmed MaalejEmail author
  • Guillaume Tatur
  • Marie-Céline Lorenzini
  • Christelle Delecroix
  • Gérard Dupeyron
  • Michel Dumas
  • Isabelle Marc
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

This paper describes a portable High Dynamic Range (HDR) imaging system for visually impaired people, intended to display contrast enhanced images of real world environment. The device is composed of a digital camera and head mounted display (HMD) equipped with high resolution screens. The camera is mounted on the HMD to acquire the ambient scene, the acquired images are processed to generate HDR images through the control of local luminance information. The contrast enhancement method adopted in our system is based on pyramidal image contrast structure representation that relies on the local band-limited contrast definition. The imaging system we propose aims at displaying images that meet the visual capabilities related to contrast sensitivity of people with low vision. It also provides a solution to alleviate discomfort problem expressed by these people when they are facing real-world changing light conditions.

Keywords

High Dynamic Range (HDR) Contrast enhancement Assistive devices Visually impaired Low vision 

Supplementary material

Supplementary material (WMV 14,397 KB)

References

  1. 1.
    Boff, K., Kaufman, L., Thomas, J.: Handbook of Perception and Human Performance: Sensory processes and perception. Number, vol. 1 in Handbook of Perception and Human Performance. Wiley (1986)Google Scholar
  2. 2.
    Glovinsky, Y., Quigley, H.A., Drum, B., Bissett, R.A., Jampel, H.D.: A whole-field scotopic retinal sensitivity test for the detection of early glaucoma damage. Arch. Ophthalmol. 110(4), 486–490 (1992)CrossRefGoogle Scholar
  3. 3.
    Jackson, G.R., Owsley Jr., C., G.M.: Aging and dark adaptation. Vision Research 39(23), 3975–3982 (1999)Google Scholar
  4. 4.
    Jacobson, S.G., Voigt, W.J., Parel, J.M., Apathy, P.P., Nghiem-Phu, L., Myers, S.W., Patella, V.M.: Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. Ophthalmology 93(12), 1604–16011 (1986)CrossRefGoogle Scholar
  5. 5.
    Wolfe, K.A., Sadun, A.A.: Threshold amsler grid testing in diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 229(3), 219–223 (1991)CrossRefGoogle Scholar
  6. 6.
    Gawande, A.A., Donovan, W.J., Ginsburg, A.P., Marmor, M.F.: Photoaversion in retinitis pigmentosa. Br. J. Ophthalmol. 73(2), 115–120 (1989)CrossRefGoogle Scholar
  7. 7.
    Luo, G., Peli, E.: Development and evaluation of vision rehabilitation devices. In: EMBC, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5228–5231 (August 2011)Google Scholar
  8. 8.
    Molton, N., Se, S., Brady, J.M., Lee, D., Probert, P.: A stereo vision-based aid for the visually impaired. In: Image and Vision Computing, pp. 251–263 (1998)Google Scholar
  9. 9.
    Froissard, B., Konik, H., Trémeau, A., Dinet, E.: Contribution of augmented reality solutions to assist visually impaired people in their mobility. In: HCI (7), pp. 182–191 (2014)Google Scholar
  10. 10.
    Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Transactions on Visualization and Computer Graphics 11(1), 13–24 (2005)CrossRefGoogle Scholar
  11. 11.
    Mann, P., Mann, S., Picard, R.W.: On being ‘undigital’ with digital cameras: Extending dynamic range by combining differently exposed pictures. In: Proceedings of IS&T, pp. 442–448 (1995)Google Scholar
  12. 12.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH 1997 Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 369–378. ACM Press/Addison-Wesley Publishing Co, New York, NY, USA (1997)Google Scholar
  13. 13.
    Robertson, M.A., Borman, S., Stevenson, R.L.: Dynamic range improvement through multiple exposures. In: Proc. of the Int. Conf. on Image Processing (ICIP 99), pp. 159–163. IEEE (1999)Google Scholar
  14. 14.
    Mann, S.: Comparametric equations with practical applications in quantigraphic image processing. IEEE Transactions on Image Processing 9(8), 1389–1406 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Jinno, T., Okuda, M., Adami, N.: Acquisition and encoding of high dynamic range images using inverse tone mapping. In: ICIP 2007 IEEE International Conference on Image Processing, 4, pp. IV - 181-IV - 184 (September 2007)Google Scholar
  16. 16.
    Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. Computer Graphics Forum 22, 419–426 (2003)CrossRefGoogle Scholar
  17. 17.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. In: SIGGRAPH 2002 Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 257–266. ACM, New York, NY, USA (2002)Google Scholar
  18. 18.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. 21(3), 249–256 (2002)CrossRefGoogle Scholar
  19. 19.
    Mantiuk, R., Myszkowski, K., Seidel, H.P.: A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. 3(3), 286–308 (2006)CrossRefGoogle Scholar
  20. 20.
    Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. ACM Trans. Graph. 27(3), 68:1–68:10 (2008)CrossRefGoogle Scholar
  21. 21.
    Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Time-dependent visual adaptation for fast realistic image display. In: SIGGRAPH 2000 Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 47–54. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (2000)Google Scholar
  22. 22.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002)CrossRefGoogle Scholar
  23. 23.
    Barten, P.: Contrast sensitivity of the human eye and its effects on image quality. Press Monographs. SPIE Optical Engineering Press (1999)Google Scholar
  24. 24.
    De Valois, R.L., De Valois, K.K.: Spatial vision. Annual Review of Psychology 31(1), 309–341 (1980)CrossRefGoogle Scholar
  25. 25.
    Wandell, B.: Foundations of vision. Sinauer Associates (1995)Google Scholar
  26. 26.
    Peli, E.: Contrast in complex images. Journal of the Optical Society of America 7, 2032–2040 (1990)CrossRefGoogle Scholar
  27. 27.
    Oomachi, K., Ogata, K., Sugawara, T., Hagiwara, A., Hata, A., Yamamoto, S.: Evaluation of contrast visual acuity in patients with retinitis pigmentosa. Clin. Ophthalmol. 5, 1459–1463 (2011)Google Scholar
  28. 28.
    Aslam, T.M., Haider, D., Murray, I.J.: Principles of disability glare measurement: An ophthalmological perspective. Acta Ophthalmol. Scand. 85(4), 354–360 (2007)CrossRefGoogle Scholar
  29. 29.
    Alexander, K.R., Barnes, C.S., Fishman, G.A., Pokorny, J., Smith, V.C.: Contrast sensitivity deficits in inferred magnocellular and parvocellular pathways in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 45(12), 4510–4519 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ahmed Maalej
    • 1
    Email author
  • Guillaume Tatur
    • 2
  • Marie-Céline Lorenzini
    • 2
  • Christelle Delecroix
    • 3
  • Gérard Dupeyron
    • 2
    • 3
  • Michel Dumas
    • 3
  • Isabelle Marc
    • 1
  1. 1.LGI2PMines of AlèsNîmesFrance
  2. 2.C.H.U of NîmesNîmesFrance
  3. 3.A.R.A.M.A.V InstitutNîmesFrance

Personalised recommendations