Advertisement

Way to Go! Detecting Open Areas Ahead of a Walking Person

  • Boris SchauerteEmail author
  • Daniel Koester
  • Manel Martinez
  • Rainer Stiefelhagen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

We determine the region in front of a walking person that is not blocked by obstacles. This is an important task when trying to assist visually impaired people or navigate autonomous robots in urban environments. We use conditional random fields to learn how to interpret texture and depth information for their accessibility. We demonstrate the effectiveness of the proposed approach on a novel dataset, which consists of urban outdoor and indoor scenes that were recorded with a handheld stereo camera.

Keywords

Depth Information Inertial Measurement Unit Obstacle Detection Impaired People Urban Scene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Martinez, M., Constantinescu, A., Schauerte, B., Koester, D., Stiefelhagen, R.: Cognitive evaluation of haptic and audio feedback in short range navigation tasks. In: Proc. 14th Int. Conf. Computers Helping People with Special Needs (2014)Google Scholar
  2. 2.
    Koester, D., Schauerte, B., Stiefelhagen, R.: Accessible section detection for visual guidance. In: IEEE/NSF Workshop on Multimodal and Alternative Perception for Visually Impaired People (2013)Google Scholar
  3. 3.
    Shoval, S., Ulrich, I., Borenstein, J.: Navbelt and the guide-cane (obstacle-avoidance systems for the blind and visually impaired). IEEE Robotics Automation Magazine 10(1), 9–20 (2003)CrossRefGoogle Scholar
  4. 4.
    Martinez, J.M.S., Ruiz, F.E., et al.: Stereo-based aerial obstacle detection for the visually impaired. In: Proc. Workshop on Computer Vision Applications for the Visually Impaired (2008)Google Scholar
  5. 5.
    Cardin, S., Thalmann, D., Vexo, F.: Wearable obstacle detection system for visually impaired people. In: Proc. VR Workshop on Haptic And Tactile Perception of Deformable Objects (2005)Google Scholar
  6. 6.
    Coughlan, J., Manduchi, R.: A mobile phone wayfinding system for visually impaired users. Assistive Technology Research Series 25(2009), 849 (2009)Google Scholar
  7. 7.
    Chen, D., Feng, W., Zhao, Q., Hu, M., Wang, T.: An Infrastructure-Free Indoor Navigation System for Blind People. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012, Part III. LNCS, vol. 7508, pp. 552–561. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Mitzel, D., Leibe, B.: Close-range human detection and tracking for head-mounted cameras. In: Proc. British Machine Vision Conference (2012)Google Scholar
  9. 9.
    Hoon, Y., Leung, L.T.S., Medioni, G.: Real-time staircase detection from a wearable stereo system. In: Proc. Int Conf. on Pattern Recognition (2012)Google Scholar
  10. 10.
    Lee, C.H., Su, Y.C., Chen, L.G.: An intelligent depth-based obstacle detection system for visually-impaired aid applications. In: Proc. Int. Workshop Image Analysis for Multimedia Interactive Services (2012)Google Scholar
  11. 11.
    Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation. In: Proc. Intelligent Vehicle Symposium (2002)Google Scholar
  12. 12.
    Braillon, C., Pradalier, C., Crowley, J., Laugier, C.: Real-time moving obstacle detection using optical flow models. In: Proc. Intelligent Vehicles Symposium (2006)Google Scholar
  13. 13.
    Se, S., Brady, M.: Ground plane estimation, error analysis and applications. Robotics and Autonomous Systems 39(2), 59–71 (2002)CrossRefGoogle Scholar
  14. 14.
    Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Moving obstacle detection in highly dynamic scenes. In: Proc. Int. Conf. Robotics and Automation (2009)Google Scholar
  15. 15.
    Ess, A., Schindler, K., Leibe, B., Van Gool, L.: Object detection and tracking for autonomous navigation in dynamic environments. The International Journal of Robotics Research 29(14) (2010)Google Scholar
  16. 16.
    Lombardi, P., Zanin, M., Messelodi, S.: Unified stereovision for ground, road, and obstacle detection. In: Proc. Intelligent Vehicles Symposium (2005)Google Scholar
  17. 17.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. Int. Conf. Machine Learning (2001)Google Scholar
  18. 18.
    Passino, G., Patras, I., Izquierdo, E.: Latent semantics local distribution for crf-based image semantic segmentation. In: Proc. British Machine Vision Conference (2009)Google Scholar
  19. 19.
    Verbeek, J., Triggs, B.: Scene segmentation with crfs learned from partially labeled images. Advances in Neural Information Processing Systems 20, 1553–1560 (2008)Google Scholar
  20. 20.
    Kong, H., Audibert, J.Y., Ponce, J.: General road detection from a single image. IEEE Trans. Image Processing 19(8), 2211–2220 (2010)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Alvarez, J., Lopez, A.: Road detection based on illuminant invariance. IEEE Trans. Intelligent Transportation Systems 12(1), 184–193 (2011)CrossRefGoogle Scholar
  22. 22.
    Wainwright, M.J., Jordan, M.I.: Graphical Models, Exponential Families, and Variational Inference. Now Publishers Inc., Hanover (2008)Google Scholar
  23. 23.
    Domke, J.: Learning graphical model parameters with approximate marginal inference. IEEE Trans. Pattern Analysis and Machine Intelligence 35(10), 2454–2467 (2013)Google Scholar
  24. 24.
    Konidaris, G., Osentoski, S., Thomas, P.S.: Value function approximation in reinforcement learning using the fourier basis. In: AAAI Conf. Artificial Intelligence (2011)Google Scholar
  25. 25.
    Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Proc. Asian Conf., Computer Vision (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Boris Schauerte
    • 1
    Email author
  • Daniel Koester
    • 1
  • Manel Martinez
    • 1
  • Rainer Stiefelhagen
    • 1
  1. 1.Institute for Anthropomatics and RoboticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations