Advertisement

Material Recognition for Efficient Acquisition of Geometry and Reflectance

  • Michael WeinmannEmail author
  • Reinhard Klein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

Typically, 3D geometry acquisition and reflectance acquisition techniques strongly rely on some basic assumptions about the surface reflectance behavior of the sample to be measured. Methods are tailored e.g. to Lambertian reflectance, mirroring reflectance, smooth and homogeneous surfaces or surfaces exhibiting mesoscopic effects. In this paper, we analyze whether multi-view material recognition can be performed robust enough to guide a subsequent acquisition process by reliably recognizing a certain material in a database with its respective annotation regarding the reconstruction methods to be chosen. This allows selecting the appropriate geometry/reflectance reconstruction approaches and, hence, increasing the efficiency of the acquisition process. In particular, we demonstrate that considering only a few view-light configurations is sufficient for obtaining high recognition scores.

Keywords

Material recognition Reflectance Set-based classification 

References

  1. 1.
    Burghouts, G.J., Geusebroek, J.M.: Color textons for texture recognition. In: BMVC, pp. 1099–1108 (2006)Google Scholar
  2. 2.
    Caputo, B., Hayman, E., Fritz, M., Eklundh, J.O.: Classifying materials in the real world. Image Vision Comput. 28(1), 150–163 (2010)CrossRefGoogle Scholar
  3. 3.
    Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: ICCV, vol. 2, pp. 1597–1604 (2005)Google Scholar
  4. 4.
    Cevikalp, H., Triggs, B.: Face recognition based on image sets. In: CVPR, pp. 2567–2573 (2010)Google Scholar
  5. 5.
    Chantler, M., McGunnigle, G., Penirschke, A., Petrou, M.: Estimating lighting direction and classifying textures. In: BMVC, pp. 72.1–72.10 (2002)Google Scholar
  6. 6.
    Cula, O.G., Dana, K.J.: 3d texture recognition using bidirectional feature histograms. IJCV 59(1), 33–60 (2004)CrossRefGoogle Scholar
  7. 7.
    Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. Tech. rep. (1996)Google Scholar
  8. 8.
    Dana, K.J., Nayar, S.K., Ginneken, B.V., Koenderink, J.J.: Reflectance and texture of real-world surfaces. In: CVPR, pp. 151–157 (1997)Google Scholar
  9. 9.
    Dana, K.J., Nayar, S.K.: Histogram model for 3d textures. In: CVPR, pp. 618–624 (1998)Google Scholar
  10. 10.
    Drbohlav, O., Chantler, M.: Illumination-invariant texture classification using single training images. In: Texture 2005: Proceedings of the International Workshop on Texture Analysis and Synthesis, pp. 31–36 (2005)Google Scholar
  11. 11.
    Fukui, K., Yamaguchi, O.: Face recognition using multi-viewpoint patterns for robot vision. In: ISRR, pp. 192–201 (2003)Google Scholar
  12. 12.
    Geusebroek, J.M., Smeulders, A.W.M.: Amsterdam library of textures (ALOT) (June 2014). http://aloi.science.uva.nl/public_alot/
  13. 13.
    van Ginneken, B., Koenderink, J.J., Dana, K.J.: Texture histograms as a function of irradiation and viewing direction. IJCV 31(2–3), 169–184 (1999)CrossRefGoogle Scholar
  14. 14.
    Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  15. 15.
    Hu, D., Bo, L., Ren, X.: Toward robust material recognition for everyday objects. In: BMVC, pp. 1–11 (2011)Google Scholar
  16. 16.
    Jegou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: CVPR, pp. 3304–3311 (2010)Google Scholar
  17. 17.
    Leung, T., Malik, J.: Recognizing surfaces using three-dimensional textons. In: ICCV, vol. 2, pp. 1010–1017 (1999)Google Scholar
  18. 18.
    Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV 43(1), 29–44 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Li, W., Fritz, M.: Recognizing materials from virtual examples. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 345–358. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  20. 20.
    Liu, C., Sharan, L., Adelson, E.H., Rosenholtz, R.: Exploring features in a bayesian framework for material recognition. In: CVPR, pp. 239–246 (2010)Google Scholar
  21. 21.
    Liu, C., Yang, G., Gu, J.: Learning discriminative illumination and filters for raw material classification with optimal projections of bidirectional texture functions. In: CVPR, pp. 1430–1437 (2013)Google Scholar
  22. 22.
    Osadchy, M., Jacobs, D.W., Ramamoorthi, R.: Using specularities for recognition. In: ICCV, pp. 1512–1519 (2003)Google Scholar
  23. 23.
    Schwartz, C., Sarlette, R., Weinmann, M., Rump, M., Klein, R.: Design and implementation of practical bidirectional texture function measurement devices focusing on the developments at the University of Bonn. Sensors 14(5), 7753–7819 (2014)CrossRefGoogle Scholar
  24. 24.
    Sharan, L., Liu, C., Rosenholtz, R., Adelson, E.H.: Recognizing materials using perceptually inspired features. IJCV 103(3), 348–371 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Varma, M., Zisserman, A.: Classifying images of materials: achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  26. 26.
    Varma, M., Zisserman, A.: Texture classification: are filter banks necessary?. In: CVPR, vol. 2, pp. 691–698 (2003)Google Scholar
  27. 27.
    Varma, M., Zisserman, A.: Unifying statistical texture classification frameworks. Image and Vision Computing 22(14), 1175–1183 (2004)CrossRefGoogle Scholar
  28. 28.
    Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. PAMI 31(11), 2032–2047 (2009)CrossRefGoogle Scholar
  29. 29.
    Visual Geometry Group (University of Oxford): Texture classification (June 2014). http://www.robots.ox.ac.uk/~vgg/research/texclass/setup.html
  30. 30.
    Weinmann, M., Gall, J., Klein, R.: Material classification based on training data synthesized using a BTF database. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part III. LNCS, vol. 8691, pp. 156–171. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  31. 31.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: CVPR, pp. 3485–3492 (2010)Google Scholar
  32. 32.
    Yamaguchi, O., Fukui, K., Maeda, K.: Face recognition using temporal image sequence. In: Int. Conf. on Automatic Face and Gesture Recognition, pp. 318–323 (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Computer Science IIUniversity of BonnBonnGermany

Personalised recommendations