A Unified Model for Image Colorization

  • Fabien PierreEmail author
  • Jean-François Aujol
  • Aurélie Bugeau
  • Vinh-Thong Ta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)


This paper addresses the topic of image colorization that consists in converting a gray-scale image into a color one. In the literature, there exist two main types of approaches to tackle this problem. The first one is the manual methods where the color information is given by some scribbles drawn by the user on the image. The interest of these approaches comes from the interactions with the user that can put any color he wants. Nevertheless, when the scene is complex many scribbles must be drawn and the interactive process becomes tedious and time-consuming. The second category of approaches is the exemplar-based methods that require a color image as input. Once the example image is given, the colorization is generally fully automatic. A limitation of these methods is that the example image needs to contain all the desired colors in the final result. In this paper, we propose a new framework that unifies these two categories of approaches into a joint variational model. Our approach is able to take into account information coming from any colorization method among these two categories. Experiments and comparisons demonstrate that the proposed approach provides competitive colorization results compared to state-of-the-art methods.


  1. 1.
    Gonzales, R.C., Wintz, P.: Digital Image Processing, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1987) Google Scholar
  2. 2.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. on Graphics 23(3), 689–694 (2004)CrossRefGoogle Scholar
  3. 3.
    Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blending. IEEE Trans. on Image Processing 15(5), 1120–1129 (2006)CrossRefGoogle Scholar
  4. 4.
    Heu, J., Hyun, D.Y., Kim, C.S., Lee, S.U.: Image and video colorization based on prioritized source propagation. In: Proc. of ICIP (2009)Google Scholar
  5. 5.
    Lagodzinski, P., Smolka, B.: Digital image colorization based on probabilistic distance transformation. Proc. of ELMAR. 2, 495–498 (2008)Google Scholar
  6. 6.
    Kim, T.H., Lee, K.M., Lee, S.U.: Edge-preserving colorization using data-driven random walks with restart. In: Proc. of ICIP, pp. 1661–1664 (2010)Google Scholar
  7. 7.
    Kawulok, M., Kawulok, J., Smolka, B.: Discriminative textural features for image and video colorization. IEICE Trans. on Information and Systems 95(7), 1722–1730 (2012)CrossRefGoogle Scholar
  8. 8.
    Drew, M.S., Finlayson, G.D.: Improvement of colorization realism via the structure tensor. Int. Jour. on Image Graphics 11(4), 589–609 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lezoray, O., Ta, V.T., Elmoataz, A.: Nonlocal graph regularization for image colorization. In: Proc. of ICPR (2008)Google Scholar
  10. 10.
    Ding, X., Xu, Y., Deng, L., Yang, X.: Colorization using quaternion algebra with automatic scribble generation. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, C.-W., Andreopoulos, Y., Breiteneder, C. (eds.) MMM 2012. LNCS, vol. 7131, pp. 103–114. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. ACM Trans. on Graphics 21(3), 277–280 (2002)CrossRefGoogle Scholar
  12. 12.
    Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: ACM Comp. Graphics and Interactive Techniques, pp. 479–488 (2000)Google Scholar
  13. 13.
    Irony, R., Cohen-Or, D., Lischinski, D.: Colorization by example. In: Eurographics Conference on Rendering Techniques, Eurographics Association, pp. 201–210 (2005)Google Scholar
  14. 14.
    Gupta, R.K., Chia, A.Y.S., Rajan, D., Ng, E.S., Zhiyong, H.: Image colorization using similar images. In: ACM Int. Conf. on Multimedia, pp. 369–378 (2012)Google Scholar
  15. 15.
    Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proc. of ICCV, pp. 10–17 (2003)Google Scholar
  16. 16.
    Charpiat, G., Hofmann, M., Schölkopf, B.: Automatic image colorization via multimodal predictions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 126–139. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    Chen, T., Wang, Y., Schillings, V., Meinel, C.: Grayscale image matting and colorization. In: Proc. of ACCV, pp. 1164–1169 (2004)Google Scholar
  18. 18.
    Bugeau, A., Ta, V.T., Papadakis, N.: Variational exemplar-based image colorization. IEEE Trans. on Image Processing 23(1), 298–307 (2014)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Pierre, F., Aujol, J.F., Bugeau, A., Ta, V.T.: Hue constrained image colorization in the RGB space. Preprint (2014)Google Scholar
  20. 20.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Jour. of Math. Imag. and Vis. 40(1), 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging 2(4), 455–484 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science 3. Cambridge University Press (1999)Google Scholar
  23. 23.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. on Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  24. 24.
    Peyré, G.: Toolbox fast marching - a toolbox for fast marching and level sets computations (2008)Google Scholar
  25. 25.
    Chen, Y., Ye, X.: Projection onto a simplex. arXiv preprint (2011). arXiv:1101.6081

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fabien Pierre
    • 1
    • 2
    • 3
    • 4
    Email author
  • Jean-François Aujol
    • 1
    • 2
  • Aurélie Bugeau
    • 3
    • 4
  • Vinh-Thong Ta
    • 4
    • 5
  1. 1.University of Bordeaux, IMB, UMR 5251TalenceFrance
  2. 2.CNRS, IMB, UMR 5251TalenceFrance
  3. 3.University of Bordeaux, LaBRI, UMR 5800TalenceFrance
  4. 4.CNRS, LaBRI, UMR 5800TalenceFrance
  5. 5.IPB, LaBRI, UMR 5800PessacFrance

Personalised recommendations