Photometric Compensation to Dynamic Surfaces in a Projector-Camera System

  • Panagiotis-Alexandros BokarisEmail author
  • Michèle Gouiffès
  • Christian Jacquemin
  • Jean-Marc Chomaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)


In this paper, a novel approach that allows color compensated projection on an arbitrary surface is presented. Assuming that the geometry of the surface is known, this method can be used in dynamic environments, where the surface color is not static. A simple calibration process is performed offline and only a single input image under reference illumination is sufficient for the estimation of the compensation. The system can recover the reflectance of the surface pixel-wise and provide an accurate photometric compensation to minimize the visibility of the projection surface. The color matching between the desired appearance of the projected image and the projection on the surface is performed in the device-independent color space CIE 1931 XYZ. The results of the evaluation confirm that this method provides a robust and accurate compensation even for surfaces with saturated colors and high spatial frequency patterns. This promising method can be the cornerstone of a real time projector-camera system for dynamic scenes.


Photometric compensation Dynamic surface Projector-camera system Augmented reality Reflectance estimation Calibration 


  1. 1.
    Amano, T.: Projection based real-time material appearance manipulation. In: IEEE CVPR Workshops, pp. 918–923 (2013)Google Scholar
  2. 2.
    Amano, T., Kato, H.: Appearance control using projection with model predictive control. In: ICPR, pp. 2832–2835 (2010)Google Scholar
  3. 3.
    Ashdown, M., Okabe, T., Sato, I., Sato, Y.: Robust content-dependent photometric projector compensation. In: IEEE CVPR Workshops, pp. 6–6, June 2006Google Scholar
  4. 4.
    Bimber, O., Emmerling, A., Klemmer, T.: Embedded entertainment with smart projectors. Computer 38(1), 48–55 (2005)CrossRefGoogle Scholar
  5. 5.
    CIE TC 8–01: A color appearance model for color management systems. Publication 159. Vienna: CIE Central Bureau (2004)Google Scholar
  6. 6.
    Fujii, K., Grossberg, M., Nayar, S.: A projector-camera system with real-time photometric adaptation for dynamic environments. In: IEEE Computer Society CVPR. vol. 2, p. 1180, June 2005Google Scholar
  7. 7.
    Grossberg, M., Peri, H., Nayar, S., Belhumeur, P.: Making one object look like another: controlling appearance using a projector-camera system. In: IEEE Computer Society CVPR. vol. 1, pp. I-452–I-459 (2004)Google Scholar
  8. 8.
    Grundhofer, A.: Practical non-linear photometric projector compensation. In: IEEE CVPR Workshops, pp. 924–929, June 2013Google Scholar
  9. 9.
    Law, A.J., Aliaga, D.G., Sajadi, B., Majumder, A., Pizlo, Z.: Perceptually based appearance modification for compliant appearance editing. Computer Graphics Forum 30(8), 2288–2300 (2011)CrossRefGoogle Scholar
  10. 10.
    Luo, M.R.: Cie 2000 color difference formula: Ciede 2000. Proc. SPIE 4421, 554–559 (2002)CrossRefGoogle Scholar
  11. 11.
    McCamy, C.S., Marcus, H., Davidson, J.G.: A color-rendition chart. J. Appl. Photogr. Eng. 2(3), 95–99 (1976)Google Scholar
  12. 12.
    Moreno, D., Taubin, G.: Simple, accurate, and robust projector-camera calibration. In: 3DIMPVT, pp. 464–471, October 2012Google Scholar
  13. 13.
    Nayar, S.K., Peri, H., Grossberg, M.D., Belhumeur, P.N.: A projection system with radiometric compensation for screen imperfections. In: IEEE International Workshop on Projector-Camera Systems (PROCAMS) (2003)Google Scholar
  14. 14.
    Ng, T.T., Pahwa, R.S., Bai, J., Tan, K.H., Ramamoorthi, R.: From the rendering equation to stratified light transport inversion. Int. J. Comput. Vision 96(2), 235–251 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Park, H., Lee, M.H., Seo, B.K., Park, J.I., Jeong, M.S., Park, T.S., Lee, Y., Kim, S.R.: Simultaneous geometric and radiometric adaptation to dynamic surfaces with a mobile projector-camera system. IEEE Transactions on Circuits and Systems for Video Technology 18(1), 110–115 (2008)CrossRefGoogle Scholar
  16. 16.
    Seime, L., Hardeberg, J.Y.: Colorimetric characterization of lcd and dlp projection displays. Journal of the Society for Information Display 11(2), 349–358 (2003)CrossRefGoogle Scholar
  17. 17.
    Wetzstein, G., Bimber, O.: Radiometric compensation through inverse light transport. In: 15th Pacific Conference on Computer Graphics and Applications, pp. 391–399, October 2007Google Scholar
  18. 18.
    Xu, Y., Aliaga, D.G.: Robust pixel classification for 3d modeling with structured light. In: Proceedings of Graphics Interface 2007. GI 2007, pp. 233–240. ACM (2007)Google Scholar
  19. 19.
    Zhang, X., Silverstein, D., Farrell, J., Wandell, B.: Color image quality metric s-cielab and its application on halftone texture visibility. In: IEEE Proceedings of Compcon. pp. 44–48, February 1997Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Panagiotis-Alexandros Bokaris
    • 1
    Email author
  • Michèle Gouiffès
    • 1
  • Christian Jacquemin
    • 1
  • Jean-Marc Chomaz
    • 2
  1. 1.LIMSI-CNRSUniversity of Paris-SudOrsay CedexFrance
  2. 2.LadHyX, CNRSÉcole PolytechniquePalaiseauFrance

Personalised recommendations