Regularized Bayesian Metric Learning for Person Re-identification

  • Venice Erin Liong
  • Jiwen Lu
  • Yongxin GeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)


Person re-identification across disjoint cameras has attracted increasing interest in computer vision due to its wide potential applications in visual surveillance. In this paper, we propose a new regularized Bayesian metric learning (RBML) method for person re-identification. While numerous metric learning methods have been proposed for person re-identification in recent years, most of them suffer from the small sample size (SSS) problem because there are not enough training samples in most practical person re-identification systems, so that the within-class and between-class variations can be well estimated to learn the distance metric. To address this, we propose a RBML method to model and regulate the eigen-spectrums of these two covariance matrices in a parametric manner, so that discriminative information can be better exploited. Experimental results on three widely used datasets demonstrate the advantage of our proposed RBML over the state-of-the-art person re-identification methods.


Person re-identification Metric learning Regularization 


  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. PAMI 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  3. 3.
    Chen, Y.-C., Patel, V.M., Phillips, P.J., Chellappa, R.: Dictionary-based face recognition from video. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 766–779. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: BMVC, pp. 1–6 (2011)Google Scholar
  5. 5.
    Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: ICML, pp. 209–216 (2007)Google Scholar
  6. 6.
    Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian recognition with a learned metric. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 501–512. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Ess, A., Leibe, B., Van Gool, L.: Depth and appearance for mobile scene analysis. In: ICCV, pp. 1–8 (2007)Google Scholar
  8. 8.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR, pp. 2360–2367 (2010)Google Scholar
  9. 9.
    Friedman, J.H.: Regularized discriminant analysis. Journal of the American Statistical Association 84(405), 165–175 (1989)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Globerson, A., Roweis, S.: Metric learning by collapsing classes. In: NIPS, pp. 451–458 (2005)Google Scholar
  11. 11.
    Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: PETS (2007)Google Scholar
  12. 12.
    Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Hirzer, M., Roth, P.M., Köstinger, M., Bischof, H.: Relaxed pairwise learned metric for person re-identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 780–793. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Jiang, X., Mandal, B., Kot, A.: Eigenfeature regularization and extraction in face recognition. PAMI 30(3), 383–394 (2008)CrossRefGoogle Scholar
  15. 15.
    Jungling, K., Bodensteiner, C., Arens, M.: Person re-identification in multi-camera networks. In: CVPRW, pp. 55–61 (2011)Google Scholar
  16. 16.
    Kostinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: CVPR, pp. 2288–2295 (2012)Google Scholar
  17. 17.
    Kviatkovsky, I., Adam, A., Rivlin, E.: Color invariants for person re-identification. PAMI 35(7), 1622–1634 (2012)CrossRefGoogle Scholar
  18. 18.
    Li, W., Zhao, R., Wang, X.: Human reidentification with transferred metric learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 31–44. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Liu, C., Gong, S., Loy, C.C., Lin, X.: Person re-identification: what features are important? In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 391–401. Springer, Heidelberg (2012) Google Scholar
  20. 20.
    Liu, N., Lu, J., Tan, Y.P.: Joint subspace learning for view-invariant gait recognition. IEEE Signal Processing Letters 18(7), 431–434 (2011)CrossRefGoogle Scholar
  21. 21.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  22. 22.
    Loy, C.C., Liu, C., Gong, S.: Person re-identification by manifold ranking. In: ICIP, pp. 3567–3571 (2013)Google Scholar
  23. 23.
    Lu, J., Tan, Y.P.: Gait-based human age estimation. IEEE Transactions on Information Forensics and Security 5(4), 761–770 (2010)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Lu, J., Tan, Y.: Uncorrelated discriminant simplex analysis for view-invariant gait signal computing. Pattern Recognition Letters 31(5), 382–393 (2010)CrossRefGoogle Scholar
  25. 25.
    Lu, J., Tan, Y.P.: Regularized locality preserving projections and its extensions for face recognition. TSMC Part B 40(3), 958–963 (2010)Google Scholar
  26. 26.
    Lu, J., Tan, Y.P.: Ordinary preserving manifold analysis for human age and head pose estimation. IEEE Transactions on Human-Machine Systems 43(2), 249–258 (2013)CrossRefGoogle Scholar
  27. 27.
    Lu, J., Tan, Y.P., Wang, G.: Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 39–51 (2013)CrossRefGoogle Scholar
  28. 28.
    Lu, J., Wang, G., Moulin, P.: Image set classification using holistic multiple order statistics features and localized multi-kernel metric learning. In: IEEE International Conference on Computer Vision, pp. 329–336 (2013)Google Scholar
  29. 29.
    Lu, J., Wang, G., Moulin, P.: Human identity and gender recognition from gait sequences with arbitrary walking directions. IEEE Transactions on Information Forensics and Security 9(1), 51–61 (2014)CrossRefGoogle Scholar
  30. 30.
    Lu, J., Zhang, E.: Gait recognition for human identification based on ica and fuzzy svm through multiple views fusion. Pattern Recognition Letters 28(16), 2401–2411 (2007)CrossRefGoogle Scholar
  31. 31.
    Lu, J., Zhou, X., Tan, Y.P., Shang, Y., Wang, G.: Neighborhood repulsed metric learning for kinship verification. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(2), 331–345 (2014)CrossRefGoogle Scholar
  32. 32.
    Ma, B., Su, Y., Jurie, F.: Bicov: a novel image representation for person re-identification and face verification. In: BMVC, pp. 1–6 (2012)Google Scholar
  33. 33.
    Ma, B., Su, Y., Jurie, F.: Local descriptors encoded by fisher vectors for person re-identification. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 413–422. Springer, Heidelberg (2012) Google Scholar
  34. 34.
    Mignon, A., Jurie, F.: Pcca: A new approach for distance learning from sparse pairwise constraints. In: CVPR, pp. 2666–2672 (2012)Google Scholar
  35. 35.
    Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recognition 33(11), 1771–1782 (2000)CrossRefGoogle Scholar
  36. 36.
    Prosser, B., Zheng, W.S., Gong, S., Xiang, T., Mary, Q.: Person re-identification by support vector ranking. In: BMVC, pp. 1–11 (2010)Google Scholar
  37. 37.
    Schwartz, W.R., Davis, L.S.: Learning discriminative appearance-based models using partial least squares. In: SIBGRAPI, pp. 322–329 (2009)Google Scholar
  38. 38.
    Tao, D., Jin, L., Wang, Y., Yuan, Y., Li, X.: Person re-identification by regularized smoothing kiss metric learning. TCSVT 23(10), 1675–1685 (2013)Google Scholar
  39. 39.
    Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor classification. JMLR 10, 207–244 (2009)zbMATHGoogle Scholar
  40. 40.
    Yan, H., Lu, J., Deng, W., Zhou, X.: Discriminative multimetric learning for kinship verification. IEEE Transactions on Information Forensics and Security 9(7), 1169–1178 (2014)CrossRefGoogle Scholar
  41. 41.
    Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: CVPR, pp. 3586–3593 (2013)Google Scholar
  42. 42.
    Zheng, W., Gong, S., Xiang, T.: Re-identification by relative distance comparison. PAMI 35(3), 653–668 (2013)CrossRefGoogle Scholar
  43. 43.
    Zheng, W.S., Gong, S., Xiang, T.: Associating groups of people. In: BMVC, pp. 1–11 (2009)Google Scholar
  44. 44.
    Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: CVPR, pp. 649–656 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Advanced Digital Sciences CenterSingaporeSingapore
  2. 2.Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of EducationChongqingChina
  3. 3.School of Software EngineeringChongqing UniversityChongqingChina

Personalised recommendations