Advertisement

Calibration Methodology for Distant Surveillance Cameras

  • Peter GemeinerEmail author
  • Branislav Micusik
  • Roman Pflugfelder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

We present a practical method for video surveillance networks to calibrate their cameras which have mostly non-overlapping field of views and might be tens of meters apart. The calibration or estimating the camera pose, focal length and radial distortion is an essential requirement in video surveillance systems for any further automated tasks like person tracking or flow monitoring. The proposed methodology casts the calibration as a localization problem of an image with respect to a 3D model which is built a priori with a moving camera. The method comprises state-of-the-art functioning blocks, the Structure from Motion (SfM) and minimal Perspective-n-Point (PnP) solvers, which were proved stable in 3D computer vision community and applies them in context of video surveillance. We demonstrate that the calibration method is effective in difficult repetitive, reflective and texture less large indoor environments like an airport.

Keywords

Video surveillance Networked cameras Calibration 

References

  1. 1.
    Faugeras, O., Luong, Q.T., Papadopoulou, T.: The Geometry of Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some of Their Applications. MIT Press (2001)Google Scholar
  2. 2.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)Google Scholar
  3. 3.
    Wildenauer, H., Hanbury, A.: Robust camera self-calibration from monocular images of manhattan worlds. In: Proc. CVPR (2012)Google Scholar
  4. 4.
    Wildenauer, H., Micusik, B.: Closed form solution for radial distortion estimation from a single vanishing point. In: Proc. BMVC (2013)Google Scholar
  5. 5.
    Krahnstoever, N., Mendonca, P.: Bayesian autocalibration for surveillance. In: Proc. ICCV (2005)Google Scholar
  6. 6.
    Micusik, B., Pajdla, T.: Simultaneous surveillance camera calibration and foot-head homology estimation from human detections. In: Proc. CVPR (2010)Google Scholar
  7. 7.
    Rahimi, A., Dunagan, B., Darrell, T.: Tracking people with a sparse network of bearing sensors. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 507–518. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  8. 8.
    Krahnstoever, N., Mendona, P.R.S.: Autocalibration from tracks of walking people. In: Proc. BMVC (2006)Google Scholar
  9. 9.
    Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proc. CVPR (1997)Google Scholar
  10. 10.
    Zhang, Z., Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330–1334 (1998)CrossRefGoogle Scholar
  11. 11.
    Svoboda, T., Martinec, D., Pajdla, T.: A convenient multicamera self-calibration for virtual environments. Presence: Teleoperators and Virtual Environments 14(4), 407–422 (2005)CrossRefGoogle Scholar
  12. 12.
    Funiak, S., Guestrin, C., Paskin, M., Sukthankar, R.: Distributed localization of networked cameras. In: Proc. IPSN (2006)Google Scholar
  13. 13.
    Devarajan, D., Cheng, Z., Radke, R.: Calibrating distributed camera networks. Proceedings of the IEEE 96(10), 1625–1639 (2008)CrossRefGoogle Scholar
  14. 14.
    Rahimi, A., Dunagan, B., Darrell, T.: Simultaneous calibration and tracking with a network of non-overlapping sensors. In: Proc. CVPR (2004)Google Scholar
  15. 15.
    Rudoy, M., Rohrs, C.: Enhanced simultaneous camera calibration and path estimation. In: Proc. ACSSC (2006)Google Scholar
  16. 16.
    Picus, C., Pflugfelder, R., Micusik, B.: Auto-calibration of non-overlapping multi-camera CCTV systems. In: Shan, C., Porikli, F., Xiang, T., Gong, S. (eds.) Video Analytics for Business Intelligence. SCI, vol. 409, pp. 43–67. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  17. 17.
    Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-from-motion point clouds to fast location recognition. In: Proc. CVPR (2009)Google Scholar
  18. 18.
    Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2D-to-3D matching. In: Proc. ICCV (2011)Google Scholar
  19. 19.
    Sattler, T., Leibe, B., Kobbelt, L.: Improving image-based localization by active correspondence search. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 752–765. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  20. 20.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections in 3D. ACM Transactions on Graphics (SIGGRAPH Proceedings) 25(3), 835–846 (2006)Google Scholar
  21. 21.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building rome in a day. In: International Conference on Computer Vision (2009)Google Scholar
  22. 22.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  23. 23.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, pp. 384–393 (2002)Google Scholar
  24. 24.
    Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Pattern Analysis and Machine Intelligence 26(6), 756–770 (2004)CrossRefGoogle Scholar
  25. 25.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  26. 26.
    Josephson, K., Byröd, M.: Pose estimation with radial distortion and unknown focal length. In: Proc. CVPR (2009)Google Scholar
  27. 27.
    Bujnak, M., Kukelova, Z., Pajdla, T.: New efficient solution to the absolute pose problem for camera with unknown focal length and radial distortion. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 11–24. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  28. 28.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Real-time solution to the absolute pose problem with unknown radial distortion and focal length. In: Proc. ICCV (2013)Google Scholar
  29. 29.
    Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: Proc. CVPR (2011)Google Scholar
  30. 30.
    Micusik, B., Wildenauer, H.: Minimal solution for uncalibrated absolute pose problem with a known vanishing point. In: Proc. 3DV (2013)Google Scholar
  31. 31.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Closed-form solutions to minimal absolute pose problems with known vertical direction. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 216–229. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  32. 32.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Peter Gemeiner
    • 1
    Email author
  • Branislav Micusik
    • 1
  • Roman Pflugfelder
    • 1
  1. 1.AIT Austrian Institute of Technology GmbHViennaAustria

Personalised recommendations