Advertisement

Local Binary Patterns to Evaluate Trabecular Bone Structure from Micro-CT Data: Application to Studies of Human Osteoarthritis

  • Jérôme ThevenotEmail author
  • Jie Chen
  • Mikko Finnilä
  • Miika Nieminen
  • Petri Lehenkari
  • Simo Saarakkala
  • Matti Pietikäinen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8926)

Abstract

Osteoarthritis (OA) causes progressive degeneration of articular cartilage and pathological changes in subchondral bone. These changes can be assessed volumetrically using micro-computed tomography (\(\mu \)CT) imaging. The local descriptor, i.e. local binary pattern (LBP), is a new alternative solution to perform analysis of local bone structures from \(\mu \)CT scans. In this study, different trabecular bone samples were prepared from patients diagnosed with OA and treated with total knee arthroplasty. The LBP descriptor was applied to correlate the distribution of local patterns with the severity of the disease. The results obtained suggest the appearance and disappearance of specific oriented patterns with OA, as an adaptation of the bone to the decrease of cartilage thickness. The experimental results suggest that the LBP descriptor can be used to assess the changes in the trabecular bone due to OA.

Keywords

Bone structural analysis Micro-CT Osteoarthritis Multiscale LBP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennell, K., Creaby, M., Wrigley, T., Hunter, D.: Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology. Arthritis Rheum. 58(9), 2776–2785 (2008)CrossRefGoogle Scholar
  2. 2.
    Bobinac, D., Spanjol, J., Zoricic, S., Maric, I.: Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone 32(3), 284–290 (2003)CrossRefGoogle Scholar
  3. 3.
    Bouxsein, M., Boyd, S., Christiansen, B., Guldberg, R., Jepsen, K., Müller, R.: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner Res. 25(7), 1468–1486 (2010)CrossRefGoogle Scholar
  4. 4.
    Buckwalter, J., Mankin, H.: Articular cartilage: degeneration and osteoarthritis and repair and regeneration and and transplantation. Instr. Course Lect. 47, 487–504 (2012)Google Scholar
  5. 5.
    Burr, D., Gallant, M.: Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8(11), 665–673 (2002)CrossRefGoogle Scholar
  6. 6.
    Chappard, C., Peyrin, F., Bonnassie, A., Lemineur, G., Brunet-Imbault, B., Lespessailles, E., Benhamou, C.: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage 14(3), 215–223 (2006)CrossRefGoogle Scholar
  7. 7.
    Chiba, K., Ito, M., Osaki, M., Uetani, M., Shindo, H.: In vivo structural analysis of subchondral trabecular bone in osteoarthritis of the hip using multi-detector row ct. Osteoarthritis Cartilage 19(2), 180–185 (2011)CrossRefGoogle Scholar
  8. 8.
    Custers, R., Creemers, L., Verbout, A., VanRijen, M., Dhert, W., Saris, D.: Reliability and reproducibility and variability of the traditional histologic histochemical grading system vs the new oarsi osteoarthritis cartilage histopathology assessment system. Osteoarthritis Cartilage 15(11), 1241–1248 (2007)CrossRefGoogle Scholar
  9. 9.
    Ding, M., Danielsen, C., Hvid, I.: Effects of hyaluronan on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Bone 36(3), 489–501 (2005)CrossRefGoogle Scholar
  10. 10.
    Finnilä, M., Aho, O.M., Tiitu, V., Thevenot, J., Rautiainen, J., Nieminen, M., Valkealahti, M., Lehenkari, P., Saarakkala, S.: Correlation of subchondral bone morphometry and oarsi grade in osteoarthritic human knee samples. Osteoarthritis Cartilage 22(S), 350–351 (2014)CrossRefGoogle Scholar
  11. 11.
    Goldring, M., Goldring, S.: Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N.Y. Acad. Sci. 1192, 230–237 (2010)CrossRefGoogle Scholar
  12. 12.
    Goldring, S., Goldring, M.: Bone and cartilage in osteoarthritis: is what’s best for one good or bad for the other? Arthritis Res. Ther. 12(5), 143 (2010)CrossRefGoogle Scholar
  13. 13.
    Hirvasniemi, J., Thevenot, J., Immonen, V., Liikavainio, T., Pulkkinen, P., Jämsä, T., Arokoski, J., Saarakkala, S.: Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis. Osteoarthritis Cartilage (2014). doi: 10.1016/j.joca.2014.06.021
  14. 14.
    Houam, L., Hafiane, A., Boukrouche, A., Lespessailles, E., Jennane, R.: One dimensional local binary pattern for bone texture characterization. Pattern Anal. Appl. 17(1), 1–15 (2012)MathSciNetGoogle Scholar
  15. 15.
    Intema, F., Hazewinkel, H., Gouwens, D., Bijlsma, J., Weinans, H., Lafeber, F., Mastbergen, S.: In early oa and thinning of the subchondral plate is directly related to cartilage damage: results from a canine aclt-meniscectomy model. Osteoarthritis Cartilage 18(5), 691–698 (2010)CrossRefGoogle Scholar
  16. 16.
    Intema, F., Sniekers, Y., Weinans, H., Vianen, M., Yocum, S., Zuurmond, A., DeGroot, J., Lafeber, F., Mastbergen, S.: Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis. J. Bone Miner Res. 25(7), 1650–1657 (2010)CrossRefGoogle Scholar
  17. 17.
    Kamibayashi, L., Wyss, U., Cooke, T., Zee, B.: Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 17(1), 27–35 (1995)CrossRefGoogle Scholar
  18. 18.
    Li, G., Yin, J., Gao, J., Cheng, T., Pavlos, N., Zhang, C., Zheng, M.: Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res. Ther. 15(6), 223 (2013)CrossRefGoogle Scholar
  19. 19.
    Matsui, H., Shimizu, M., Tsuji, H.: Cartilage and subchondral bone interaction in osteoarthrosis of human knee joint: a histological and histomorphometric study. Microsc. Res. Tech. 37(4), 333–342 (1997)CrossRefGoogle Scholar
  20. 20.
    Mohan, G., Perilli, E., Kuliwaba, J., Humphries, J., Parkinson, I., Fazzalari, N.: Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis. Arthritis Res. Ther. 13(6), 210 (2011)CrossRefGoogle Scholar
  21. 21.
    Nakashima, Y., Nakano, T.: Optimizing contrast agents with respect to reducing beam hardening in nonmedical x-ray computed tomography experiments. J. Xray Sci. Technol. 22(1), 91–103 (2014)Google Scholar
  22. 22.
    Neda, S.C., Roman-Blas, J., Largo, R., Herrero-Beaumont, G.: Subchondral bone as a key target for osteoarthritis treatment. Biochem. Pharmacol. 83(2), 315–323 (2012)Google Scholar
  23. 23.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. In: British Machine Vision Conference, vol. 25, pp. 51–59 (1996)Google Scholar
  24. 24.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  25. 25.
    Otsu, N.: A treshold selection method from gray-level histograms. IEEE Transactions of Systems and Man and Cybernetics 9(1) (1979)Google Scholar
  26. 26.
    Pearson, R., Kurien, T., Shu, K., Scammell, B.: Histopathology grading systems for characterisation of human knee osteoarthritis : reproducibility and variability and reliability and correlation and validity. Osteoarthritis Cartilage 19(3), 324–331 (2011)CrossRefGoogle Scholar
  27. 27.
    Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer vision using local binary patterns. Springer (2011)Google Scholar
  28. 28.
    Pritzker, K., Gay, S., Jimenez, S., Ostergaard, K., Pelletier, J., Revell, P., Salter, D., Berg, W.V.: Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14(1), 13–29 (2006)CrossRefGoogle Scholar
  29. 29.
    Qi, X., YuQiao, Y., Li, C., Guo, J.: Multi-scale joint encoding of local binary patterns for texture and material classification. In: British Machine Vision Conference (2013)Google Scholar
  30. 30.
    Seeman, E., Delmas, P.: Bone quality-the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354(21), 2250–2261 (2010)CrossRefGoogle Scholar
  31. 31.
    Souza, A., Udupa, J., Saha, P.: Volume rendering in the presence of partial volume effects. IEEE Trans. Med. Imaging 24(2), 223–235 (2005)CrossRefGoogle Scholar
  32. 32.
    Thevenot, J., Hirvasniemi, J., Finnilä, M., Pulkkinen, P., Kuhn, V., Link, T., Eckstein, F., Jämsä, T., Saarakkala, S.: Trabecular homogeneity index derived from plain radiograph to evaluate bone quality. J. Bone Miner Res. 28(12), 2584–2591 (2013)CrossRefGoogle Scholar
  33. 33.
    Wang, T., Wen, C., Yan, C., Lu, W., Chiu, K.: Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis. Osteoarthritis Cartilage 21(4), 574–581 (2013)CrossRefGoogle Scholar
  34. 34.
    Wolff, J.: Das gesetz der transformation der knochen. The Law of Bone Remodelling (1892)Google Scholar
  35. 35.
    Woloszynski, T., Podsiadlo, P., Stachowiak, G., Kurzynski, M.: A signature dissimilarity measure for trabecular bone texture in knee radiographs. Med. Phys. 37(5), 2030–2042 (2010)CrossRefGoogle Scholar
  36. 36.
    Zhang, Z., Li, Z., Jiang, L., Jiang, S., Dai, L.: Micro-ct and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporos. Int. 21(8), 1383–1390 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jérôme Thevenot
    • 1
    • 2
    • 3
    Email author
  • Jie Chen
    • 3
  • Mikko Finnilä
    • 1
    • 2
  • Miika Nieminen
    • 2
  • Petri Lehenkari
    • 2
  • Simo Saarakkala
    • 1
    • 2
  • Matti Pietikäinen
    • 3
  1. 1.Department of Medical TechnologyUniversity of OuluOuluFinland
  2. 2.MRCOulu University Hospital and University of OuluOuluFinland
  3. 3.Department of Computer Science and EngineeringUniversity of OuluOuluFinland

Personalised recommendations