Fast Features Invariant to Rotation and Scale of Texture

  • Milan SulcEmail author
  • Jiri Matas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8926)


A family of novel texture representations called Ffirst, the Fast Features Invariant to Rotation and Scale of Texture, is introduced. New rotation invariants are proposed, extending the LBP-HF features, improving the recognition accuracy. Using the full set of LBP features, as opposed to uniform only, leads to further improvement. Linear Support Vector Machines with an approximate \(\chi ^2\)-kernel map are used for fast and precise classification.

Experimental results show that Ffirst exceeds the best reported results in texture classification on three difficult texture datasets KTH-TIPS2a, KTH-TIPS2b and ALOT, achieving 88 %, 76 % and 96 % accuracy respectively. The recognition rates are above 99 % on standard texture datasets KTH-TIPS, Brodatz32, UIUCTex, UMD, CUReT.


Texture Classification LBP LBP-HF Histogram SVM Feature maps Ffirst 


  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  2. 2.
    Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  3. 3.
    Brodatz, P.: Textures: a photographic album for artists and designers, vol. 66. Dover, New York (1966)Google Scholar
  4. 4.
    Burghouts, G.J., Geusebroek, J.M.: Material-specific adaptation of color invariant features. Pattern Recognition Letters 30(3), 306–313 (2009)CrossRefGoogle Scholar
  5. 5.
    Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: Tenth IEEE International Conference on Computer Vision ICCV 2005, vol. 2, pp. 1597–1604. IEEE (2005)Google Scholar
  6. 6.
    Chen, C.h., Pau, L.F., Wang, P.S.p.: Handbook of pattern recognition and computer vision. World Scientific (2010)Google Scholar
  7. 7.
    Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild . arXiv preprint arxiv:1311.3618 (2013)Google Scholar
  8. 8.
    Dana, K.J., Van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Transactions on Graphics (TOG) 18(1), 1–34 (1999)CrossRefGoogle Scholar
  9. 9.
    Fritz, M., Hayman, E., Caputo, B., Eklundh, J.O.: The kth-tips database (2004)Google Scholar
  10. 10.
    Guo, Z., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing 19(6), 1657–1663 (2010)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using lbp variance (lbpv) with global matching. Pattern Recognition 43(3), 706–719 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics 6, 610–621 (1973)CrossRefGoogle Scholar
  13. 13.
    Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the Significance of Real-World Conditions for Material Classification. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  14. 14.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. PAMI 27(8), 1265–1278 (2005)CrossRefGoogle Scholar
  15. 15.
    Li, P., Wang, Q., Zhang, L.: A novel earth movers distance methodology for image matching with gaussian mixture models. In: Proc. of IEEE International Conference on Computer Vision (ICCV) (2013)Google Scholar
  16. 16.
    Lin, H.T., Lin, C.J., Weng, R.C.: A note on platts probabilistic outputs for support vector machines. Machine Learning 68(3) (2007)Google Scholar
  17. 17.
    Mäenpää, T., Pietikäinen, M.: Multi-scale Binary Patterns for Texture Analysis. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 885–892. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  18. 18.
    Mallikarjuna, P., Fritz, M., Targhi, A., Hayman, E., Caputo, B., Eklundh, J.: The kth-tips and kth-tips2 databases (2006).
  19. 19.
    Mirmehdi, M., Xie, X., Suri, J.: Handbook of texture analysis. Imperial College Press (2009)Google Scholar
  20. 20.
    Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proc. IAPR 1994, vol. 1, pp. 582–585 (1994)Google Scholar
  21. 21.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  22. 22.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  23. 23.
    Ojala, T., Valkealahti, K., Oja, E., Pietikäinen, M.: Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recognition 34(3), 727–739 (2001)CrossRefzbMATHGoogle Scholar
  24. 24.
    Pietikäinen, M.: Texture recognition. Computer Vision: A Reference Guide, 789–793 (2014)Google Scholar
  25. 25.
    Pietikäinen, M., Ojala, T., Xu, Z.: Rotation-invariant texture classification using feature distributions. Pattern Recognition 33(1), 43–52 (2000)CrossRefGoogle Scholar
  26. 26.
    Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers, 10(3) (1999)Google Scholar
  27. 27.
    Quan, Y., Xu, Y., Sun, Y., Luo, Y.: Lacunarity analysis on image patterns for texture classification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2014)Google Scholar
  28. 28.
    Renninger, L.W., Malik, J.: When is scene identification just texture recognition? Vision Research 44(19), 2301–2311 (2004)CrossRefGoogle Scholar
  29. 29.
    Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss minimization. arXiv preprint arxiv:1209.1873 (2012)Google Scholar
  30. 30.
    Sharma, G., ul Hussain, S., Jurie, F.: Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 1–12. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  31. 31.
    Sifre, L., Mallat, S.: Rotation, scaling and deformation invariant scattering for texture discrimination. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1233–1240. IEEE (2013)Google Scholar
  32. 32.
    Sulc, M., Matas, J.: Kernel-mapped histograms of multi-scale lbps for tree bark recognition. In: 2013 28th International Conference of Image and Vision Computing New Zealand (IVCNZ), pp. 82–87 (2013)Google Scholar
  33. 33.
    Valkealahti, K., Oja, E.: Reduced multidimensional co-occurrence histograms in texture classification. PAMI 20(1), 90–94 (1998)CrossRefGoogle Scholar
  34. 34.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008).
  35. 35.
    Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. PAMI, 34(3) (2011)Google Scholar
  36. 36.
    Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man and Cybernetics 4, 269–285 (1976)CrossRefGoogle Scholar
  37. 37.
    Weszka, J.S., Rosenfeld, A.: An application of texture analysis to materials inspection. Pattern Recognition 8(4), 195–200 (1976)CrossRefGoogle Scholar
  38. 38.
    Xu, Y., Ji, H., Fermüller, C.: Viewpoint invariant texture description using fractal analysis. International Journal of Computer Vision 83(1), 85–100 (2009)CrossRefGoogle Scholar
  39. 39.
    Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. IJCV 73(2), 213–238 (2007)CrossRefGoogle Scholar
  40. 40.
    Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recognition 35(3), 735–747 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Zhao, G., Ahonen, T., Matas, J., Pietikainen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Transactions on Image Processing 21(4), 1465–1477 (2012)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 915–928 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for Machine Perception, Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations