Affordance-Based Object Recognition Using Interactions Obtained from a Utility Maximization Principle

  • Tobias KluthEmail author
  • David Nakath
  • Thomas Reineking
  • Christoph Zetzsche
  • Kerstin Schill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8926)


The interaction of biological agents within the real world is based on their abilities and the affordances of the environment. By contrast, the classical view of perception considers only sensory features, as do most object recognition models. Only a few models make use of the information provided by the integration of sensory information as well as possible or executed actions. Neither the relations shaping such an integration nor the methods for using this integrated information in appropriate representations are yet entirely clear. We propose a probabilistic model integrating the two information sources in one system. The recognition process is equipped with an utility maximization principle to obtain optimal interactions with the environment


Affordance Sensorimotor object recognition Information gain 


  1. 1.
    Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active vision. International Journal of Computer Vision 1(4), 333–356 (1988)CrossRefGoogle Scholar
  2. 2.
    Bajcsy, R.: Active perception. Proceedings of the IEEE 76(8), 966–1005 (1988)CrossRefGoogle Scholar
  3. 3.
    Gibson, J.: The ecological approach to visual perception. Houghton Mifflin, Boston (1992)Google Scholar
  4. 4.
    Grèzes, J., Decety, J.: Does visual perception of object afford action? Evidence from a Neuroimaging study. Neuropsychologia 40(2), 212–222 (2002)CrossRefGoogle Scholar
  5. 5.
    Helbig, H.B., Graf, M., Kiefer, M.: The role of action representations in visual object recognition. Experimental Brain Research 174(2), 221–228 (2006)CrossRefGoogle Scholar
  6. 6.
    Hurley, S.L.: Consciousness in action. Harvard University Press (2002)Google Scholar
  7. 7.
    Neisser, U.: Cognition and reality: Principles and implications of cognitive psychology. WH Freeman/Times Books/Henry Holt & Co. (1976)Google Scholar
  8. 8.
    Noë, A.: Action in Perception. MIT Press (2004)Google Scholar
  9. 9.
    Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research 155, 23–36 (2006)CrossRefGoogle Scholar
  10. 10.
    O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24(5), 939–972 (2001)CrossRefGoogle Scholar
  11. 11.
    Schill, K., Umkehrer, E., Beinlich, S., Krieger, G., Zetzsche, C.: Scene analysis with saccadic eye movements: top-down and bottom-up modeling. Journal of Electronic Imaging 10(1), 152–160 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tobias Kluth
    • 1
    Email author
  • David Nakath
    • 1
  • Thomas Reineking
    • 1
  • Christoph Zetzsche
    • 1
  • Kerstin Schill
    • 1
  1. 1.Cognitive NeuroinformaticsUniversity of BremenBremenGermany

Personalised recommendations