Advertisement

Events Detection Using a Video-Surveillance Ontology and a Rule-Based Approach

  • Mohammed Yassine Kazi Tani
  • Adel LablackEmail author
  • Abdelghani Ghomari
  • Ioan Marius Bilasco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8926)

Abstract

In this paper, we propose the use of a Video-surveillance Ontology and a rule-based approach to detect an event. The scene is described using the concepts presented in the ontology. Then, the blobs are extracted from the video stream and are represented using the bounding boxes that enclose them. Finally, a set of rules have been proposed and have been applied to videos selected from PETS 2012 challenge that contain multiple objects events (e.g. Group walking, Group splitting, etc.).

Keywords

Ontology Video surveillance Blobs Rules 

References

  1. 1.
    Bagdanov, A.D., Bertini, M., Del Bimbo, A., Serra, G., Torniai, C.: Semantic annotation and retrieval of video events using multimedia ontologies. In: International Conference on Semantic Computing (ICSC), pp. 713–720 (2007)Google Scholar
  2. 2.
    Ballan, L., Bertini, M., Del Bimbo, A., Serra, G.: Semantic annotation of soccer videos byvisual instance clustering and spatial/temporal reasoning in ontologies. Multimedia Tools and Applications 2, 313–337 (2010)CrossRefGoogle Scholar
  3. 3.
    Bertini, M., Del Bimbo, A., Torniai, C.G.C., Cucchiara, R.: Dynamic pictorial ontologies for video digital libraries annotation. In: 1st ACM Workshop on The Many Faces of Multimedia Semantics, pp. 47–56 (2007)Google Scholar
  4. 4.
    Bertini, M., Del Bimbo, A., Serra, G.: Learning ontology rules for semantic video annotation. In: 2nd ACM Workshop on Multimedia Semantics (2008)Google Scholar
  5. 5.
    Del Bimbo, A., Pala, P., Vicario, E.: Spatial arrangement of color flows for video retrieval. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 413–416 (2001)Google Scholar
  6. 6.
    PETS 2012 challenge (2012). http://www.cvg.rdg.ac.uk/pets2012/a.html
  7. 7.
    Chupeau, B., Forest, R.: An evaluation of the effectiveness of color attributes for video indexing. In: SPIE Storage and Retrieval for Media Databases, pp. 470–481 (2001)Google Scholar
  8. 8.
    Dasiopoulou, S., Mezaris, V., Kompatsiaris, I., Papastathis, V.-K., Strintzis, M.G.: Knowledge assisted semantic video object detection. IEEE Transactions on Circuits and Systems for Video Technology 10, 1210–1224 (2005)CrossRefGoogle Scholar
  9. 9.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, (5–6):907–928, November-December 1995Google Scholar
  10. 10.
    Lee, J., Abualkibash, M.H., Ramalingam, P.K.: Ontology-based shot indexing for videosurveillance system. In: Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering, pp. 237–242 (2008)Google Scholar
  11. 11.
    Miguel, J.C.S., Sanchez, J.M.M., García-Martín, A.: An ontology for event detection and its application in surveillance video. In: 6th IEEE International Conference Advanced Video and Signal based Surveillance (AVSS), pp. 220–225 (2009)Google Scholar
  12. 12.
    Noyet, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first ontology. Technical report (2001)Google Scholar
  13. 13.
    O’Connor, M.F., Knublauch, H., Tu, S., Grosof, B.N., Dean, M., Grosso, W., Musen, M.A.: Supporting rule system interoperability on the semantic web with SWRL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 974–986. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  14. 14.
    Protégé. The protégé project (2012). http://protege.stanford.edu
  15. 15.
    Sanchez, J.M., Binefa, X., Vitria, J., Radeva, P.: Linking visual cues and semantic terms under specific digital video domains. Journal of Visual Languages and Computing 11(3), 253–271 (2000)CrossRefGoogle Scholar
  16. 16.
    See, J., Wei, L.S., Hanmandlu, M.: Human motion detection using fuzzy rule-base classification of moving blob regions. In: International Conference on Robotics, Vision, Information and Signal Processing (ROVISP) (2005)Google Scholar
  17. 17.
    Smith, M.K., Welty, C., McGuinness, D.L.: Owl web ontology language guide. In: W3C Recommendation (2004). http://www.w3.org/TR/2004/REC-owl-guide-20040210/
  18. 18.
    Snidaro, L., Belluz, M., Foresti, G.L.: Representing and recognizing complex events in surveillance applications. In: 4th IEEE International Conference Advanced Video and Signal based Surveillance (AVSS), pp. 493–498 (2007)Google Scholar
  19. 19.
    Di Stefano, L., Mola, M., Neri, G., Varani, E.: A rule-based tracking system for video surveillance applications. In: International Conference on Knowledge-Based Intelligent Information and Engineering Systems (KES) (2002)Google Scholar
  20. 20.
    Wu, Y., Zhuang, Y., Pan, Y.: Content-based video retrieval integrating human perception. In: SPIE Storage and Retrieval for Media Databases, pp. 562–570 (2001)Google Scholar
  21. 21.
    Xue, M., Zheng, S., Zhang, C.: Ontology-based surveillance video archive and retrieval system. In: 5th International Conference on Advanced Computational Intelligence (ICACI) (2012)Google Scholar
  22. 22.
    Yusuf, J.C.M., Su’ ud, M.M., Boursier, P., Alam, M.: Extensive overview of an ontology-based architecture for accessing multi-format information for disaster management. In: International Conference on Information Retrieval and Knowledge Management (CAMP), pp. 294–299 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mohammed Yassine Kazi Tani
    • 1
  • Adel Lablack
    • 2
    Email author
  • Abdelghani Ghomari
    • 1
  • Ioan Marius Bilasco
    • 2
  1. 1.RIIR LaboratoryUniversity of Es-SéniaOranAlgeria
  2. 2.Laboratoire D’Informatique Fondamentale de LilleUniversité de Lille 1LilleFrance

Personalised recommendations