The Visual Object Tracking VOT2014 Challenge Results

  • Matej Kristan
  • Roman Pflugfelder
  • Aleš Leonardis
  • Jiri Matas
  • Luka Čehovin
  • Georg Nebehay
  • Tomáš Vojíř
  • Gustavo Fernández
  • Alan Lukežič
  • Aleksandar Dimitriev
  • Alfredo Petrosino
  • Amir Saffari
  • Bo Li
  • Bohyung Han
  • CherKeng Heng
  • Christophe Garcia
  • Dominik Pangeršič
  • Gustav Häger
  • Fahad Shahbaz Khan
  • Franci Oven
  • Horst Possegger
  • Horst Bischof
  • Hyeonseob Nam
  • Jianke Zhu
  • JiJia Li
  • Jin Young Choi
  • Jin-Woo Choi
  • João F. Henriques
  • Joost van de Weijer
  • Jorge Batista
  • Karel Lebeda
  • Kristoffer Öfjäll
  • Kwang Moo Yi
  • Lei Qin
  • Longyin Wen
  • Mario Edoardo Maresca
  • Martin Danelljan
  • Michael Felsberg
  • Ming-Ming Cheng
  • Philip Torr
  • Qingming Huang
  • Richard Bowden
  • Sam Hare
  • Samantha YueYing Lim
  • Seunghoon Hong
  • Shengcai Liao
  • Simon Hadfield
  • Stan Z. Li
  • Stefan Duffner
  • Stuart Golodetz
  • Thomas Mauthner
  • Vibhav Vineet
  • Weiyao Lin
  • Yang Li
  • Yuankai Qi
  • Zhen Lei
  • Zhi Heng Niu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8926)

Abstract

The Visual Object Tracking challenge 2014, VOT2014, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 38 trackers are presented. The number of tested trackers makes VOT 2014 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2014 challenge that go beyond its VOT2013 predecessor are introduced: (i) a new VOT2014 dataset with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2013 evaluation methodology, (iii) a new unit for tracking speed assessment less dependent on the hardware and (iv) the VOT2014 evaluation toolkit that significantly speeds up execution of experiments. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net).

Keywords

Performance evaluation Short-term single-object trackers VOT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, vol. 1, pp. 798–805. IEEE Computer Society (June 2006)Google Scholar
  2. 2.
    Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)CrossRefGoogle Scholar
  3. 3.
    Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92(1), 1–31 (2011)CrossRefGoogle Scholar
  4. 4.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  5. 5.
    Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Comp. Vis. Patt. Recognition (2010)Google Scholar
  6. 6.
    Bordes, A., Bottou, L., Gallinari, P., Weston, J.: Solving multiclass support vector machines with larank. In: Proceedings of the 24th International Conference on Machine Learning (ICML) (2007)Google Scholar
  7. 7.
    Briechle, K., Hanebeck, U.D.: Template matching using fast normalized cross correlation. In: Aerospace/Defense Sensing, Simulation, and Controls, International Society for Optics and Photonics, pp. 95–102 (2001)Google Scholar
  8. 8.
    Cai, Z., Wen, L., Yang, J., Lei, Z., Li, S.Z.: Structured visual tracking with dynamic graph. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 86–97. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  9. 9.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar
  10. 10.
    Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Int. Conf. Computer Vision, vol. 1, pp. 438–445 (2001)Google Scholar
  11. 11.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)CrossRefGoogle Scholar
  12. 12.
    Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Comp. Vis. Patt. Recognition, vol. 2, pp. 142–149 (2000)Google Scholar
  13. 13.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Comp. Vis. Patt. Recognition, vol. 1, pp. 886–893 (June 2005)Google Scholar
  14. 14.
    Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: Proceedings of the British Machine Vision Conference BMVC (2014)Google Scholar
  15. 15.
    Danelljan, M., Khan, F.S., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: 2014 Conference on Computer Vision and Pattern Recognition CVPR (2014)Google Scholar
  16. 16.
    Demšar, J.: On the appropriateness of statistical tests in machine learning. In: Workshop on Evaluation Methods for Machine Learning ICML (2008)Google Scholar
  17. 17.
    Duffner, S., Garcia, C.: Pixeltrack: a fast adaptive algorithm for tracking non-rigid objects. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 2480–2487 (2013)Google Scholar
  18. 18.
    Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge - a retrospective. Int. J. Comput. Vision (2014)Google Scholar
  19. 19.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)CrossRefGoogle Scholar
  20. 20.
    Felsberg, M.: Enhanced distribution field tracking using channel representations. In: Vis. Obj. Track. Challenge VOT 2013, In conjunction with ICCV 2013 (2013)Google Scholar
  21. 21.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Gabriel, P., Verly, J., Piater, J., Genon, A.: The state of the art in multiple object tracking under occlusion in video sequences. In: Proc. Advanced Concepts for Intelligent Vision Systems, pp. 166–173 (2003)Google Scholar
  23. 23.
    Gavrila, D.M.: The visual analysis of human movement: A survey. Comp. Vis. Image Understanding 73(1), 82–98 (1999)CrossRefMATHGoogle Scholar
  24. 24.
    Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: CVPR Workshops, pp. 1–8. IEEE (2012)Google Scholar
  25. 25.
    Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured output tracking with kernels. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) Int. Conf. Computer Vision, pp. 263–270. IEEE (2011)Google Scholar
  26. 26.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  27. 27.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 1(3), 125–141 (2014)Google Scholar
  28. 28.
    Hong, S., Kwak, S., Han, B.: Orderless tracking through model-averaged posterior estimation. In: Proceedings of the International Conference on Computer Vision (ICCV) (2013)Google Scholar
  29. 29.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Systems, Man and Cybernetics, C 34(30), 334–352 (2004)Google Scholar
  30. 30.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Engineering 82, 34–45 (1960)Google Scholar
  31. 31.
    Kasturi, R., Goldgof, D.B., Soundararajan, P., Manohar, V., Garofolo, J.S., Bowers, R., Boonstra, M., Korzhova, V.N., Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 319–336 (2009)CrossRefGoogle Scholar
  32. 32.
    Korman, S., Avidan, S.: Coherency sensitive hashing. In: Proceedings of the International Conference on Computer Vision (ICCV) (2011)Google Scholar
  33. 33.
    Kristan, M., Perš, J., Perše, M., Kovačič, S.: Closed-world tracking of multiple interacting targets for indoor-sports applications. Comput. Vision Image Understanding 113(5), 598–611 (2009)CrossRefGoogle Scholar
  34. 34.
    Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Cehovin, L., Nebehay, G., Fernandez, G., Vojir, T.: The vot2013 challenge: overview and additional results. In: Computer Vision Winter Workshop (2014)Google Scholar
  35. 35.
    Kristan, M., Čehovin, L.: Visual Object Tracking Challenge (VOT2013) Evaluation Kit. Visual Object Tracking Challenge (2013)Google Scholar
  36. 36.
    Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Čehovin, L., Nebehay, G., Fernandez, G., Vojir, T., Gatt, A., Khajenezhad, A., Salahledin, A., Soltani-Farani, A., Zarezade, A., Petrosino, A., Milton, A., Bozorgtabar, B., Li, B., Chan, C.S., Heng, C., Ward, D., Kearney, D., Monekosso, D., Karaimer, H.C., Rabiee, H.R., Zhu, J., Gao, J., Xiao, J., Zhang, J., Xing, J., Huang, K., Lebeda, K., Cao, L., Maresca, M.E., Lim, M.K., Helw, M.E., Felsberg, M., Remagnino, P., Bowden, R., Goecke, R., Stolkin, R., Lim, S.Y., Maher, S., Poullot, S., Wong, S., Satoh, S., Chen, W., Hu, W., Zhang, X., Li, Y., Niu, Z.: The visual object tracking VOT 2013 challenge results. In: ICCV Workshops, pp. 98–111 (2013)Google Scholar
  37. 37.
    Lebeda, K., Bowden, R., Matas, J.: Long-term tracking through failure cases. In: Vis. Obj. Track. Challenge VOT 2013, In conjunction with ICCV 2013 (2013)Google Scholar
  38. 38.
    Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Proceedings of the International Conference on Computer Vision (ICCV), vol. 2, pp. 1482–1489 (2005)Google Scholar
  39. 39.
    Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: Comp. Vis. Patt. Recognition, pp. 1305–1312. IEEE (2011)Google Scholar
  40. 40.
    Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A.R., Van den Hengel, A.: A survey of appearance models in visual object tracking. arXiv:1303.4803 [cs.CV] (2013)
  41. 41.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Imaging Understanding Workshop, pp. 121–130 (1981)Google Scholar
  42. 42.
    Maresca, M.E., Petrosino, A.: Matrioska: A multi-level approach to fast tracking by learning. In: Proc. Int. Conf. Image Analysis and Processing, pp. 419–428 (2013)Google Scholar
  43. 43.
    Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Comp. Vis. Image Understanding 81(3), 231–268 (2001)CrossRefMATHGoogle Scholar
  44. 44.
    Moeslund, T.B., Hilton, A., Kruger, V.: A survey of advances in vision-based human motion capture and analysis. Comp. Vis. Image Understanding 103(2–3), 90–126 (2006)CrossRefGoogle Scholar
  45. 45.
    Nam, H., Hong, S., Han, B.: Online graph-based tracking. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 112–126. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  46. 46.
    Nebehay, G., Pflugfelder, R.: Consensus-based matching and tracking of keypoints for object tracking. In: IEEE Winter Conference on Applications of Computer Vision (March 2014)Google Scholar
  47. 47.
    Nummiaro, K., Koller-Meier, E., Van Gool, L.: Color features for tracking non-rigid objects. Chinese J. Automation 29(3), 345–355 (2003)Google Scholar
  48. 48.
    Pang, Y., Ling, H.: Finding the best from the second bests - inhibiting subjective bias in evaluation of visual tracking algorithms. In: Int. Conf. Computer Vision (2013)Google Scholar
  49. 49.
    Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Proc. European Conf. Computer Vision, vol. 1, pp. 661–675 (2002)Google Scholar
  50. 50.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  51. 51.
    Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vision 77(1–3), 125–141 (2008)CrossRefGoogle Scholar
  52. 52.
    Sevilla-Lara, L., Learned-Miller, E.G.: Distribution fields for tracking. In: Comp. Vis. Patt. Recognition, pp. 1910–1917. IEEE (2012)Google Scholar
  53. 53.
    Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual Tracking: an Experimental Survey. TPAMI (2013)Google Scholar
  54. 54.
    Tomasi, C., Kanade, L.: Detection and tracking of point features. Carnegie Mellon University, Tech. rep. (1991)Google Scholar
  55. 55.
    Torr, P.H., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78(1), 138–156 (2000)CrossRefGoogle Scholar
  56. 56.
    Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: Comp. Vis. Patt. Recognition, pp. 1521–1528. IEEE (2011)Google Scholar
  57. 57.
    Čehovin, L., Kristan, M., Leonardis, A.: Robust Visual Tracking using an Adaptive Coupled-layer Visual Model. TPAMI 35(4), 941–953 (2013)CrossRefGoogle Scholar
  58. 58.
    Čehovin, L., Kristan, M., Leonardis, A.: Is my new tracker really better than yours?. In: IEEE WACV 2014 (2014)Google Scholar
  59. 59.
    Čehovin, L.: Trax: Visual tracking exchange protocol (April 2014)Google Scholar
  60. 60.
    Vojir, T., Matas, J.: Robustifying the flock of trackers. In: Comp. Vis. Winter Workshop, pp. 91–97. IEEE (2011)Google Scholar
  61. 61.
    Van de Weijer, J., Schmid, C., Verbeek, J.J., Larlus, D.: Learning color names for real-world applications. IEEE Transaction in Image Processing 18(7), 1512–1524 (2009)CrossRefGoogle Scholar
  62. 62.
    Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Comp. Vis. Patt. Recognition (2013)Google Scholar
  63. 63.
    Yi, K.M., Jeong, H., Heo, B., Chang, H.J., Choi, J.Y.: Initialization-insensitive visual tracking through voting with salient local features. In: 2013 IEEE International Conference on Computer Vision ICCV, pp. 2912–2919 (2013)Google Scholar
  64. 64.
    Yi, K.M., Jeong, H., Kim, S.W., Choi, J.Y.: Visual tracking with dual modeling. In: Proceedings of the 27th Conference on Image and Vision Computing New Zealand, IVCNZ 2012, pp. 25–30 (2012)Google Scholar
  65. 65.
    Yilmaz, A., Shah, M.: Object tracking: A survey. Journal ACM Computing Surveys 38(4) (2006)Google Scholar
  66. 66.
    Young, D.P., Ferryman, J.M.: PETS Metrics: On-line performance evaluation service. In: ICCCN 2005 Proceedings of the 14th International Conference on Computer Communications and Networks, pp. 317–324 (2005)Google Scholar
  67. 67.
    Zhang, K., Zhang, L., Yang, M.-H.: Real-Time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matej Kristan
    • 1
  • Roman Pflugfelder
    • 2
  • Aleš Leonardis
    • 3
  • Jiri Matas
    • 4
  • Luka Čehovin
    • 1
  • Georg Nebehay
    • 2
  • Tomáš Vojíř
    • 4
  • Gustavo Fernández
    • 2
  • Alan Lukežič
    • 1
  • Aleksandar Dimitriev
    • 1
  • Alfredo Petrosino
    • 5
  • Amir Saffari
    • 6
  • Bo Li
    • 7
  • Bohyung Han
    • 8
  • CherKeng Heng
    • 7
  • Christophe Garcia
    • 9
  • Dominik Pangeršič
    • 1
  • Gustav Häger
    • 10
  • Fahad Shahbaz Khan
    • 10
  • Franci Oven
    • 1
  • Horst Possegger
    • 11
  • Horst Bischof
    • 11
  • Hyeonseob Nam
    • 8
  • Jianke Zhu
    • 12
  • JiJia Li
    • 13
  • Jin Young Choi
    • 14
  • Jin-Woo Choi
    • 15
  • João F. Henriques
    • 16
  • Joost van de Weijer
    • 17
  • Jorge Batista
    • 16
  • Karel Lebeda
    • 18
  • Kristoffer Öfjäll
    • 10
  • Kwang Moo Yi
    • 19
  • Lei Qin
    • 20
  • Longyin Wen
    • 21
  • Mario Edoardo Maresca
    • 5
  • Martin Danelljan
    • 10
  • Michael Felsberg
    • 10
  • Ming-Ming Cheng
    • 22
  • Philip Torr
    • 22
  • Qingming Huang
    • 23
  • Richard Bowden
    • 18
  • Sam Hare
    • 24
  • Samantha YueYing Lim
    • 7
  • Seunghoon Hong
    • 8
  • Shengcai Liao
    • 21
  • Simon Hadfield
    • 18
  • Stan Z. Li
    • 21
  • Stefan Duffner
    • 9
  • Stuart Golodetz
    • 22
  • Thomas Mauthner
    • 11
  • Vibhav Vineet
    • 22
  • Weiyao Lin
    • 13
  • Yang Li
    • 12
  • Yuankai Qi
    • 23
  • Zhen Lei
    • 21
  • Zhi Heng Niu
    • 7
  1. 1.University of LjubljanaLjubljanaSlovenia
  2. 2.Austrian Institute of TechnologyViennaAustria
  3. 3.University of BirminghamBirminghamUK
  4. 4.Czech Technical UniversityPragueCzech Republic
  5. 5.Parthenope University of NaplesNaplesItaly
  6. 6.Affectv LimitedLondonUK
  7. 7.Panasonic R&D CenterSingaporeSingapore
  8. 8.POSTECHPohangKorea
  9. 9.LIRISLyonFrance
  10. 10.Linköping UniversityLinköpingSweden
  11. 11.Graz University of TechnologyGrazAustria
  12. 12.Zhejiang UniversityHangzhouChina
  13. 13.Shanghai Jiao Tong UniversityShanghaiChina
  14. 14.ASRI Seoul National UniversityGwanakKorea
  15. 15.Electronics and Telecommunications Research InstituteDaejeonKorea
  16. 16.University of CoimbraCoimbraPortugal
  17. 17.Universitat Autonoma de BarcelonaBarcelonaSpain
  18. 18.University of SurreySurreyUK
  19. 19.EPFL CVLabLausanneSwitzerland
  20. 20.ICT CASBeijingChina
  21. 21.Chinese Academy of SciencesBeijingChina
  22. 22.University of OxfordOxfordUK
  23. 23.Harbin Institute of TechnologyHarbinChina
  24. 24.Obvious Engineering LimitedLondonUK

Personalised recommendations