Graph-Based Shape Similarity of Petroglyphs

  • Markus SeidlEmail author
  • Ewald Wieser
  • Matthias Zeppelzauer
  • Axel Pinz
  • Christian Breiteneder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8925)


Petroglyphs can be found on rock panels all over the world. The possibilities of digital photography and more recently various 3D scanning methods opened a new stage for the documentation and analysis of petroglyphs. The existing work on petroglyph shape similarity has largely avoided the questions of articulation, merged petroglyphs and potentially missing parts of petroglyphs. We aim at contributing to close this gap by applying a novel petroglyph shape descriptor based on the skeletal graph. Our contribution is twofold: First, we provide a real-world dataset of petroglyph shapes. Second, we propose a graph-based shape descriptor for petroglyphs. Comprehensive evaluations show, that the combination of the proposed descriptor with existing ones improves the performance in petroglyph shape similarity modeling.


Petroglyph similarity Shape similarity Graph matching Graph edit distance Graph embedding 


  1. 1.
    Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: shape at its absolute scale. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(12), 2188–2203 (2008)CrossRefGoogle Scholar
  2. 2.
    Bai, X., Latecki, L.: Path similarity skeleton graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1282–1292 (2008)CrossRefGoogle Scholar
  3. 3.
    Bai, X., Latecki, L., Liu, W.Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 449–462 (2007). 00228CrossRefGoogle Scholar
  4. 4.
    Bai, X., Liu, W., Tu, Z.: Integrating contour and skeleton for shape classification. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 360–367. IEEE (2009)Google Scholar
  5. 5.
    Baseski, E., Erdem, A., Tari, S.: Dissimilarity between two skeletal trees in a context. Pattern Recognition 42(3), 370–385 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  7. 7.
    Bounova, G., de Weck, O.: Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles. Phys. Rev. E 85, 016117 (2012)CrossRefGoogle Scholar
  8. 8.
    Demirci, M.F., van Leuken, R.H., Veltkamp, R.C.: Indexing through Laplacian spectra. Computer Vision and Image Understanding 110(3), 312–325 (2008)CrossRefGoogle Scholar
  9. 9.
    Deufemia, V., Paolino, L., de Lumley, H.: Petroglyph recognition using self-organizing maps and fuzzy visual language parsing. In: 2012 IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI), vol. 1, pp. 852–859 (2012)Google Scholar
  10. 10.
    Deufemia, V., Paolino, L.: Combining unsupervised clustering with a non-linear deformation model for efficient petroglyph recognition. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Li, B., Porikli, F., Zordan, V., Klosowski, J., Coquillart, S., Luo, X., Chen, M., Gotz, D. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 128–137. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Di Ruberto, C.: Recognition of shapes by attributed skeletal graphs. Pattern Recognition 37(1), 21–31 (2004)CrossRefGoogle Scholar
  12. 12.
    Erdem, A., Tari, S.: A similarity-based approach for shape classification using Aslan skeletons. Pattern Recognition Letters 31(13), 2024–2032 (2010)CrossRefGoogle Scholar
  13. 13.
    Gibert, J., Valveny, E., Bunke, H.: Graph embedding in vector spaces by node attribute statistics. Pattern Recogn. 45(9), 3072–3083 (2012)CrossRefGoogle Scholar
  14. 14.
    Klein, P.N., Sebastian, T.B., Kimia, B.B.: Shape matching using edit-distance: an implementation. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2001, Society for Industrial and Applied Mathematics, Philadelphia, pp. 781–790 (2001)Google Scholar
  15. 15.
    Krish, K., Snyder, W.: A new accumulator-based approach to shape recognition. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 157–169. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  16. 16.
    Kropatsch, W.G., et al. (eds.): GbRPR 2013. LNCS, vol. 7877. Springer, Heidelberg (2013) Google Scholar
  17. 17.
    Latecki, L.J., Lakamper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1185–1190 (2000)CrossRefGoogle Scholar
  18. 18.
    Latecki, L.J., Lakamper, R., Eckhardt, T.: Shape descriptors for non-rigid shapes with a single closed contour. In: IEEE Conference on Computer Vision and Pattern Recognition, 2000, Proceedings, vol. 1, pp. 424–429. IEEE (2000)Google Scholar
  19. 19.
    Li, G., Semerci, M., Yener, B., Zaki, M.J.: Graph classification via topological and label attributes. In: 9th Workshop on Mining and Learning with Graphs (with SIGKDD) (August 2011) (2011). 00009Google Scholar
  20. 20.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 286–299 (2007)CrossRefGoogle Scholar
  21. 21.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  22. 22.
    Mai, F., Chang, C.Q., Hung, Y.S.: Affine-invariant shape matching and recognition under partial occlusion. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 4605–4608. IEEE (2010)Google Scholar
  23. 23.
    Mokhtarian, F.: Silhouette-based isolated object recognition through curvature scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(5), 539–544 (1995)CrossRefGoogle Scholar
  24. 24.
    Mokhtarian, F., Abbasi, S., Kittler, J., et al.: Efficient and robust retrieval by shape content through curvature scale space. Series on Software Engineering and Knowledge Engineering 8, 51–58 (1997)Google Scholar
  25. 25.
    Mokhtarian, F., Mackworth, A.: Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(1), 34–43 (1986)CrossRefGoogle Scholar
  26. 26.
    Pavlidis, T.: A review of algorithms for shape analysis. Computer graphics and image processing 7(2), 243–258 (1978)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Petrakis, E.G.M., Diplaros, A., Milios, E.: Matching and retrieval of distorted and occluded shapes using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(11), 1501–1516 (2002)CrossRefGoogle Scholar
  28. 28.
    Riesen, K., Emmenegger, S., Bunke, H.: A novel software toolkit for graph edit distance computation. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 142–151. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  29. 29.
    Seidl, M., Breiteneder, C.: Automated petroglyph image segmentation with interactive classifier fusion. In: Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2012) (2012)Google Scholar
  30. 30.
    Seidl, M., Judmaier, P., Baker, F., Chippindale, C., Egger, U., Jax, N., Weis, C., Grubinger, M., Seidl, G.: Multi-touch rocks: playing with tangible virtual heritage in the museum - first user tests. In: VAST11: The 12th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers, pp. 73–76 (2011)Google Scholar
  31. 31.
    Siddiqi, K., Kimia, B.: A shock grammar for recognition. In: 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1996, Proceedings CVPR 1996, pp. 507–513 (1996)Google Scholar
  32. 32.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: Shock graphs and shape matching. International Journal of Computer Vision 35(1), 13–32 (1999)CrossRefGoogle Scholar
  33. 33.
    Sun, K.B., Super, B.J.: Classification of contour shapes using class segment sets. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, CVPR 2005, vol. 2, pp. 727–733. IEEE (2005)Google Scholar
  34. 34.
    Xu, Y., Wang, B., Liu, W., Bai, X.: Skeleton graph matching based on critical points using path similarity. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009, Part III. LNCS, vol. 5996, pp. 456–465. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  35. 35.
    Yang, M., Kpalma, K., Ronsin, J.: A survey of shape feature extraction techniques. Pattern Recognition 43–90 (2008). 00163Google Scholar
  36. 36.
    Zeng, Z., Tung, A.K., Wang, J., Feng, J., Zhou, L.: Comparing stars: On approximating graph edit distance. Proceedings of the VLDB Endowment 2(1), 25–36 (2009)CrossRefGoogle Scholar
  37. 37.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)CrossRefGoogle Scholar
  38. 38.
    Zhu, Q., Wang, X., Keogh, E., Lee, S.H.: Augmenting the generalized Hough transform to enable the mining of petroglyphs. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 1057–1066. ACM, New York (2009)Google Scholar
  39. 39.
    Zhu, Q., Wang, X., Keogh, E., Lee, S.H.: An efficient and effective similarity measure to enable data mining of petroglyphs. Data Mining and Knowledge Discovery 23(1), 91–127 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Markus Seidl
    • 1
    Email author
  • Ewald Wieser
    • 1
  • Matthias Zeppelzauer
    • 1
  • Axel Pinz
    • 2
  • Christian Breiteneder
    • 3
  1. 1.St. Pölten University of Applied SciencesSt PöltenAustria
  2. 2.Graz University of TechnologyGrazAustria
  3. 3.Vienna University of TechnologyViennaAustria

Personalised recommendations