Advertisement

Re-presentations of Art Collections

  • Joon Son Chung
  • Relja ArandjelovićEmail author
  • Giles Bergel
  • Alexandra Franklin
  • Andrew Zisserman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8925)

Abstract

The objective of this paper is to show how modern computer vision methods can be used to aid the art or book historian in analysing large digital art collections.

We make three contributions: first, we show that simple document processing methods in combination with accurate instance based retrieval methods can be used to automatically obtain all the illustrations from a collection of illustrated documents. Second, we show that image level descriptors can be used to automatically cluster collections of images based on their categories, and thereby represent a collection by its semantic content. Third, we show that instance matching can be used to identify illustrations from the same source, e.g. printed from the same woodblock, and thereby represent a collection in a manner suitable for temporal analysis of the printing process.

These contributions are demonstrated on a collection of illustrated English Ballad sheets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Proc. CVPR (2012)Google Scholar
  2. 2.
    Arandjelović, R., Zisserman, A.: All about VLAD. In: Proc. CVPR (2013)Google Scholar
  3. 3.
    Barrow, T.: From ‘The Easter Wedding’ to ‘The Frantick Lover’: The repeated woodcut and its shifting roles. Studies in Ephemera: Text and Image in Eighteenth-Century Print (2013)Google Scholar
  4. 4.
    Bergel, G., Franklin, A., Heaney, M., Arandjelović, R., Zisserman, A., Funke, D.: Content-based image-recognition on printed broadside ballads: the Bodleian libraries’ ImageMatch tool. In: IFLA World Library and Information Congress (2013)Google Scholar
  5. 5.
    Blayney, P.: The Stationers’ Company and the Printers of London, 1501–1557 (2013)Google Scholar
  6. 6.
  7. 7.
    British Printed Images to 1700: A digital library of prints and book illustrations from early modern Britain. http://www.bpi1700.org.uk/index.html/
  8. 8.
    Delhumeau, J., Gosselin, P.H., Jégou, H., Pérez, P.: Revisiting the VLAD image representation. In: Proc. ACMM (2013)Google Scholar
  9. 9.
    Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., Schmid, C.: Evaluation of GIST descriptors for web-scale image search. In: Proc. CIVR (2009)Google Scholar
  10. 10.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Franklin, A.: The art of illustration in Bodleian Broadside Ballads before 1820. Bodleian Library Record 17(5) (2002)Google Scholar
  12. 12.
    Hedges, B.: A method for dating early books and prints using image analysis. In: The Royal Society (2006)Google Scholar
  13. 13.
    Hedges, B.: Wormholes record species history in space and time. Biology Letters 9(1), 20120926 (2013)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Jégou, H., Chum, O.: Negative evidences and co-occurrences in image retrieval: the benefit of PCA and whitening. In: Proc. ECCV (2012)Google Scholar
  16. 16.
    Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE PAMI (2011)Google Scholar
  17. 17.
    Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: Proc. CVPR (2010)Google Scholar
  18. 18.
    Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local images descriptors into compact codes. IEEE PAMI (2012)Google Scholar
  19. 19.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  20. 20.
    Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. IJCV 1(60), 63–86 (2004)CrossRefGoogle Scholar
  21. 21.
    Monroy, A., Bell, P., Ommer, B.: Shaping art with art: morphological analysis for investigating artistic reproductions. In: Proceedings of the International Conference on Multimedia (2012)Google Scholar
  22. 22.
    Monroy, A., Carqu, B., Ommer, B.: Reconstructing the drawing process of reproductions from medieval images. In: Macq, B., Schelkens, P. (eds.) ICIP, pp. 2917–2920. IEEE (2011)Google Scholar
  23. 23.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithmic configuration. In: Proc. VISAPP (2009)Google Scholar
  24. 24.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV (2001)Google Scholar
  25. 25.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proc. CVPR (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Joon Son Chung
    • 1
  • Relja Arandjelović
    • 1
    Email author
  • Giles Bergel
    • 2
  • Alexandra Franklin
    • 3
  • Andrew Zisserman
    • 1
  1. 1.Department of Engineering ScienceUniversity of OxfordOxfordUK
  2. 2.Faculty of English Language and LiteratureUniversity of OxfordOxfordUK
  3. 3.Bodleian LibrariesUniversity of OxfordOxfordUK

Personalised recommendations