Workshop at the European Conference on Computer Vision

ECCV 2014: Computer Vision - ECCV 2014 Workshops pp 654-668 | Cite as

Subspace Procrustes Analysis

  • Xavier Perez-Sala
  • Fernando De la Torre
  • Laura Igual
  • Sergio Escalera
  • Cecilio Angulo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8925)

Abstract

Procrustes Analysis (PA) has been a popular technique to align and build \(2\)-D statistical models of shapes. Given a set of \(2\)-D shapes PA is applied to remove rigid transformations. Then, a non-rigid \(2\)-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling \(2\)-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the \(2\)-D shapes provide a uniform sampling of the \(3\)-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several instances of a \(3\)-D object, SPA computes the mean and a \(2\)-D subspace that can simultaneously model all rigid and non-rigid deformations of the \(3\)-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that \(3\)-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased \(2\)-D models by uniformly sampling different views of the \(3\)-D object. CSPA provides a continuous approach to uniformly sample the space of \(3\)-D rotations, being more efficient in space and time. Experiments using SPA to learn \(2\)-D models of bodies from motion capture data illustrate the benefits of our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carnegie mellon motion capture database. http://mocap.cs.cmu.edu
  2. 2.
    Bartoli, A., Pizarro, D., Loog, M.: Stratified generalized procrustes analysis. IJCV 101(2), 227–253 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brand, M.: Morphable 3D models from video. In: CVPR, vol. 2, pp. II-456. IEEE (2001)Google Scholar
  4. 4.
    Cootes, T.F., Edwards, G.J., Taylor, C.J., et al.: Active appearance models. PAMI 23(6), 681–685 (2001)CrossRefGoogle Scholar
  5. 5.
    De la Torre, F.: A least-squares framework for component analysis. PAMI 34(6), 1041–1055 (2012)CrossRefGoogle Scholar
  6. 6.
    Dryden, I.L., Mardia, K.V.: Statistical shape analysis, vol. 4. John Wiley & Sons New York (1998)Google Scholar
  7. 7.
    Frey, B.J., Jojic, N.: Transformation-invariant clustering using the em algorithm. PAMI 25(1), 1–17 (2003)CrossRefGoogle Scholar
  8. 8.
    Goodall, C.: Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society, Series B (Methodological), 285–339 (1991)Google Scholar
  9. 9.
    Gower, J.C., Dijksterhuis, G.B.: Procrustes problems, vol. 3. Oxford University Press, Oxford (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Igual, L., Perez-Sala, X., Escalera, S., Angulo, C., De la Torre, F.: Continuous generalized procrustes analysis. PR 47(2), 659–671 (2014)MATHGoogle Scholar
  11. 11.
    Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: Proceedings of the British Machine Vision Conference (2010). doi:10.5244/C.24.12
  12. 12.
    Kokkinos, I., Yuille, A.: Unsupervised learning of object deformation models. In: ICCV, pp. 1–8. IEEE (2007)Google Scholar
  13. 13.
    Learned-Miller, E.G.: Data driven image models through continuous joint alignment. PAMI 28(2), 236–250 (2006)CrossRefGoogle Scholar
  14. 14.
    Marimont, D.H., Wandell, B.A.: Linear models of surface and illuminant spectra. JOSA A 9(11), 1905–1913 (1992)CrossRefGoogle Scholar
  15. 15.
    Matthews, I., Xiao, J., Baker, S.: 2D vs. 3D deformable face models: Representational power, construction, and real-time fitting. IJCV 75(1), 93–113 (2007)Google Scholar
  16. 16.
    Minka, T.P.: Old and new matrix algebra useful for statistics (2000). http://research.microsoft.com/en-us/um/people/minka/papers/matrix/
  17. 17.
    Naimark, M.A.: Linear representatives of the Lorentz group (translated from Russian). Macmillan, New York (1964)Google Scholar
  18. 18.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2(11), 559–572 (1901)CrossRefMATHGoogle Scholar
  19. 19.
    Pizarro, D., Bartoli, A.: Global optimization for optimal generalized procrustes analysis. In: CVPR, pp. 2409–2415. IEEE (2011)Google Scholar
  20. 20.
    De la Torre, F., Black, M.J.: Robust parameterized component analysis: theory and applications to 2d facial appearance models. CVIU 91(1), 53–71 (2003)Google Scholar
  21. 21.
    Torresani, L., Hertzmann, A., Bregler, C.: Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. PAMI 30(5), 878–892 (2008)CrossRefGoogle Scholar
  22. 22.
    Xiao, J., Chai, J., Kanade, T.: A closed-form solution to non-rigid shape and motion recovery. IJCV 67(2), 233–246 (2006)CrossRefMATHGoogle Scholar
  23. 23.
    Yezzi, A.J., Soatto, S.: Deformotion: Deforming motion, shape average and the joint registration and approximation of structures in images. IJCV 53(2), 153–167 (2003)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xavier Perez-Sala
    • 1
    • 3
    • 4
  • Fernando De la Torre
    • 2
  • Laura Igual
    • 3
    • 5
  • Sergio Escalera
    • 3
    • 5
  • Cecilio Angulo
    • 4
  1. 1.Fundació Privada Sant Antoni AbatVilanova i la GeltrúSpain
  2. 2.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  3. 3.Computer Vision CenterUniversitat Autònoma de BarcelonaBellaterraSpain
  4. 4.Universitat Politècnica de CatalunyaVilanova i la GeltrúSpain
  5. 5.Universitat de BarcelonaBarcelonaSpain

Personalised recommendations