Assessing the Suitability of the Microsoft Kinect for Calculating Person Specific Body Segment Parameters

  • Sean ClarksonEmail author
  • Jon Wheat
  • Ben Heller
  • Simon Choppin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8925)


Many biomechanical and medical analyses rely on the availability of reliable body segment parameter estimates. Current techniques typically take many manual measurements of the human body, in conjunction with geometric models or regression equations. However, such techniques are often criticised. 3D scanning offers many advantages, but current systems are prohibitively complex and costly. The recent interest in natural user interaction (NUI) has led to the development of low cost (~£200) sensors capable of 3D body scanning, however, there has been little consideration of their validity. A scanning system comprising four Microsoft Kinect sensors (a typical NUI sensor) was used to scan twelve living male participants three times. Volume estimates from the system were compared to those from a geometric modelling technique. Results demonstrated high reliability (ICC>0.7, TEM<1 %) and presence of a systematic measurement offset (0.001m\(^{3}\)), suggesting the system would be well received by healthcare and sports communities.


Body segment parameters BSP Kinect Depth camera Measurement Body scanning 


  1. 1.
    Lerch, T., MacGillivray, M., Domina, T.: 3D Laser Scanning: A Model of Multidisciplinary Research. Journal of Textile and Apparel Technology and Management 5(3), 1–22 (2006)Google Scholar
  2. 2.
    Robinson, A., Mccarthy, M., Brown, S., Evenden, A., Zou, L.: Improving the quality of measurements through the implementation of customised reference artefacts. In: 3D Body Scanning Technologies, pp. 235–246 Lugano (2012)Google Scholar
  3. 3.
    Piovesan, D., Pierobon, A., Dizio, P., Lackner, J.R.: Comparative analysis of methods for estimating arm segment parameters and joint torques from inverse dynamics. Journal of Biomechanical Engineering 133(3), 31003(1)-31003(15) (March 2011)Google Scholar
  4. 4.
    Durkin, J.L., Dowling, J.J., Andrews, D.M.: The measurement of body segment inertial parameters using dual energy X-ray absorptiometry. Journal of Biomechanics 35(12), 1575–1580 (2002)CrossRefGoogle Scholar
  5. 5.
    Damavandi, M., Farahpour, N., Allard, P.: Determination of body segment masses and centers of mass using a force plate method in individuals of different morphology. Medical Engineering & Physics 31(9), 1187–1194 (2009)CrossRefGoogle Scholar
  6. 6.
    Pearsall, D.J., Costigan, P.A.: The effect of segment parameter error on gait analysis results. Gait & Posture 9(3), 173–183 (1999)CrossRefGoogle Scholar
  7. 7.
    Rao, G., Amarantini, D., Berton, E., Favier, D.: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. Journal of Biomechanics 39(8), 1531–1536 (2006)CrossRefGoogle Scholar
  8. 8.
    Bauer, J.J., Pavol, M.J., Snow, C.M., Hayes, W.C.: MRI-derived body segment parameters of children differ from age-based estimates derived using photogrammetry. Journal of Biomechanics 40(13), 2904–2910 (2007)CrossRefGoogle Scholar
  9. 9.
    Pearsall, D.J., Reid, J.G., Livingston, L.A.: Segmental inertial parameters of the human trunk as determined from computed tomography. Annuals of Biomedical Engineering 24(2), 198–210 (1996)CrossRefGoogle Scholar
  10. 10.
    Cheng, C.K., Chen, H.H., Chen, C.S., Chen, C.L., Chen, C.Y.: Segment inertial properties of Chinese adults determined from magnetic resonance imaging. Clinical Biomechanics 15(8), 559–566 (2000)CrossRefGoogle Scholar
  11. 11.
    Martin, P.E., Mungiole, M., Longhill, J.M.: The use of magnetic resonance imaging for measuring segment inertial properties. Journal of Biomechanics 22(4), 367–376 (1989)CrossRefGoogle Scholar
  12. 12.
    Dempster, W.: Space Requirements of the Seated Operator. Technical report, Michigan (1955)Google Scholar
  13. 13.
    Zatsiorsky, V.: The Mass and Inertia Characteristics of the Main Segments of the Human Body. Biomechanics VIII(B), 1152–1159 (1983)Google Scholar
  14. 14.
    Leva, P.D.: Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters. Journal of Biomechanics 29(9), 1223–1230 (1996)CrossRefGoogle Scholar
  15. 15.
    Gittoes, M.J.R., Kerwin, D.G.: Component inertia modelling of segmental wobbling and rigid masses. Journal of Applied Biomechanics 22(2), 148–154 (2006)Google Scholar
  16. 16.
    Pearsall, D., Reid, J.: The Study of Human Body Segment Parameters in Biomechanics: A Historical Review and Current Status Report. Sports Medicine 18(5), 126–140 (1994)CrossRefGoogle Scholar
  17. 17.
    Hanavan, E.P.: A Mathematical Model of the Human Body. PhD thesis, USAF Institute of Technology, Ohio (1964)Google Scholar
  18. 18.
    Yeadon, M.R.: The simulation of aerial movement-II. A mathematical inertia model of the human body. Journal of Biomechanics 23(1), 67–74 (1990)CrossRefGoogle Scholar
  19. 19.
    Challis, J.H.: Precision of the Estimation of Human Limb Inertial Parameters. Journal of Applied Biomechanics 15, 418–428 (1999)Google Scholar
  20. 20.
    Wicke, J., Dumas, G.A.: Influence of the Volume and Density Functions Within Geometric Models for Estimating Trunk Inertial Parameters. Journal of Applied Biomechanics 26, 26–31 (2010)Google Scholar
  21. 21.
    Schranz, N., Tomkinson, G., Olds, T., Daniell, N.: Three-dimensional anthropometric analysis: differences between elite Australian rowers and the general population. Journal of sports sciences 28(5), 459–469 (2010)CrossRefGoogle Scholar
  22. 22.
    Nikon Corp: Metris D100 Laser Scanner (2011)Google Scholar
  23. 23.
    Henderson, R., Schulmeister, K.: Laser Safety. Taylor and Francis (2003)Google Scholar
  24. 24.
    Vitronic: Vitus 3D Body Scanner (2011)Google Scholar
  25. 25.
    TC2: TC2 NX-16 3D Body Scanner. Technical report, Cary, USA (2010)Google Scholar
  26. 26.
    Weiss, A., Hirshberg, D., Black, M.J.: Home 3D body scans from noisy image and range data. In: 13th International Conference on Computer Vision, Barcelona (2011)Google Scholar
  27. 27.
    Amazon: Kinect & Kinect Adventures for XBox 360 (2012)Google Scholar
  28. 28.
    Primesense Ltd: Three Dimensional Scanning using Speckle patterns (2009)Google Scholar
  29. 29.
    Shotton, J., Sharp, T., Fitzgibbon, A., Cook, M., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-Time Human Pose Recognition in Parts from Single Depth Images. IEEE CVPR 3, 1297–1304 (2011)Google Scholar
  30. 30.
    Boehm, J.: Natural user interface sensors for human body measurement. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX(B3), 531–536 (2012)Google Scholar
  31. 31.
    Khoshelham, K.: Accuracy analysis of Kinect depth data. In: Lichti, D., Habib, A. (eds.) ISPRS Workshop Laser Scanning, Calgary, 1–6 (2010)Google Scholar
  32. 32.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. The International Journal of Robotics Research 31(5), 647–663 (2012)CrossRefGoogle Scholar
  33. 33.
    Labelle, K.: Evaluation of Kinect joint tracking for clinical and in home stroke rehabilitation tools. PhD thesis, Notre Dame, Indiana (2011)Google Scholar
  34. 34.
    Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In: Symposium, U.I.S.T. (ed.) Santa, pp. 559–568. CA, Barbara (2011)Google Scholar
  35. 35.
    Stampfli, P., Rissiek, A., Trieb, R., Seidi, A.: SizeITALY - The Actual Italian Measurement Survey. In: 3D Body Scanning Technologies, Lugano, Switzerland (2012) 261–268Google Scholar
  36. 36.
    Boehm, J.: Accuracy Investigation for Natural User Interface Sensors. In: Low Cost 3D Sensors, Algorithms and Applications, Berlin (2011)Google Scholar
  37. 37.
    Menna, F., Remondino, F., Battisti, R., Nocerino, E.: Geometric investigation of a gaming active device. In: Proceedings of the SPIE 8085(XI) (2011) 80850G(1)-80850G(15)Google Scholar
  38. 38.
    Clarkson, S., Choppin, S., Hart, J., Heller, B., Wheat, J.: Calculating Body Segment Inertia Parameters from a Single Rapid Scan Using the Microsoft Kinect. In: Consulting, Hometrica (ed.) 3D Body Scanning Technologies, pp. 153–163, Lugano. Hometrica Consulting (2012)Google Scholar
  39. 39.
    Clarkson, S., Wheat, J., Heller, B., Webster, J., Choppin, S.: Distortion Correction of Depth Data from Consumer Depth Cameras. In: Consulting, Hometrica (ed.) 3D Body Scanning Technologies, pp. 426–437, Long Beach. Hometrica Consulting (2013)Google Scholar
  40. 40.
    Khoshelham, K., Elberink, S.O.: Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)CrossRefGoogle Scholar
  41. 41.
    Soderkvist, I., Wedin, P.A.: Determining the movements of the skeleton using well configured markers. Journal of Biomechanics 26(12), 1473–1477 (1993)CrossRefGoogle Scholar
  42. 42.
    Kirby, R., Price, N., MacLeod, D.: The Influence of Foot Position on Standing Balance. Journal of Biomechanics 20(4), 423–427 (1987)CrossRefGoogle Scholar
  43. 43.
    International Standards Office: ISO 20685, 3-D Scanning Methodologies for Internationally Compatible Anthropometric Databases (2010)Google Scholar
  44. 44.
    Kouzaki, M., Masani, K.: Reduced postural sway during quiet standing by light touch is due to finger tactile feedback but not mechanical support. Experimental brain research 188(1), 153–158 (2008)CrossRefGoogle Scholar
  45. 45.
    Lackner, J., Rabin, E., DiZio, P.: Stabilization of posture by precision touch of the index finger with rigid and flexible filaments. Experimental Brain Research 139(4), 454–464 (2001)CrossRefGoogle Scholar
  46. 46.
    Schranz, N., Tomkinson, G., Olds, T., Petkov, J., Hahn, A.G.: Is three-dimensional anthropometric analysis as good as traditional anthropometric analysis in predicting junior rowing performance? Journal of sports sciences 30(12), 1241–1248 (2012)CrossRefGoogle Scholar
  47. 47.
    Stewart, A., Sutton, L.: Body Composition in Sport, Exercise and Health, 1st edn. Routledge, Oxon (2012)Google Scholar
  48. 48.
    Outram, T., Domone, S., Wheat, J.: The reliability of trunk segment inertial parameter estimates made from geometric models. In: 30th Annual Conference of Biomechanics in Sports. Number 113, pp. 47–50 (2012)Google Scholar
  49. 49.
    Munro, B.: Statistical Methods for Health Care Research, 4th edn. Lippincott Williams and Wilkins, Philadelphia (2000)Google Scholar
  50. 50.
    de Vet, H.C.W., Terwee, C.B., Knol, D.L., Bouter, L.M.: When to use agreement versus reliability measures. Journal of clinical epidemiology 59(10), 1033–1039 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sean Clarkson
    • 1
    Email author
  • Jon Wheat
    • 1
  • Ben Heller
    • 1
  • Simon Choppin
    • 1
  1. 1.Centre for Sports Engineering ResearchSheffield Hallam UniversitySheffieldUK

Personalised recommendations