Real-Time Accurate Geo-Localization of a MAV with Omnidirectional Visual Odometry and GPS
- 6 Citations
- 3.9k Downloads
Abstract
This paper presents a system for direct geo-localization of a MAV in an unknown environment using visual odometry and precise real time kinematic (RTK) GPS information. Visual odometry is performed with a multi-camera system with four fisheye cameras that cover a wide field of view which leads to better constraints for localization due to long tracks and a better intersection geometry. Visual observations from the acquired image sequences are refined with a high accuracy on selected keyframes by an incremental bundle adjustment using the iSAM2 algorithm. The optional integration of GPS information yields long-time stability and provides a direct geo-referenced solution. Experiments show the high accuracy which is below 3 cm standard deviation in position.
Keywords
Visual odometry Incremental bundle adjustment Fisheye camera Multi-camera system Omnidirectional MAVReferences
- 1.Abraham, S., Förstner, W.: Fish-eye-stereo calibration and epipolar rectification. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 59(5), 278–288 (August 2005)Google Scholar
- 2.Abraham, S., Hau, T.: Towards autonomous high-precision calibration of digital cameras. In: Proc. of SPIE Videometrics, vol. 3174, pp. 82–93, San Diego, USA, July 1997Google Scholar
- 3.Aliaga, D.: Accurate catadioptric calibration for real-time pose estimation of room-size environments. In: Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), pp. 127–134, Vancouver, Canada, July 2001Google Scholar
- 4.Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker. Intel Corporation, Microprocessor Research Labs, Tech. rep. (2000)Google Scholar
- 5.Eling, C., Klingbeil, L., Wieland, M., Kuhlmann, H.: Direct georeferencing of micro aerial vehicles - system design, system calibration and first evaluation tests. Photogrammetrie - Fernerkundung - Geoinformation (PFG) (4), August 2014Google Scholar
- 6.Engels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules. In: Proc. of the ISPRS Conference on Photogrammeric Computer Vision (PCV), Bonn, Germany, September 2006Google Scholar
- 7.Huber, P.: Robust Statistics. John Wiley, New York (1981)Google Scholar
- 8.Kaess, M., Dellaert, F.: Visual SLAM with a multi-camera rig. Tech. Rep. GIT-GVU-06-06, Georgia Institute of Technology, February 2006Google Scholar
- 9.Kaess, Michael, Ila, Viorela, Roberts, Richard, Dellaert, Frank: The Bayes tree: an algorithmic foundation for probabilistic Robot mapping. In: Hsu, David, Isler, Volkan, Latombe, Jean-Claude, Lin, Ming C. (eds.) Algorithmic Foundations of Robotics IX. STAR, vol. 68, pp. 157–173. Springer, Heidelberg (2010) Google Scholar
- 10.Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Dellaert, F.: iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree. Intl. Journal of Robotics Research (IJRR) 31(2), 217–236 (February 2012)Google Scholar
- 11.Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: Proc. of the Intl. Symposium on Mixed and Augmented Reality (ISMAR), pp. 1–10, Nara, Japan, November 2007Google Scholar
- 12.Klingbeil, L., Nieuwenhuisen, M., Schneider, J., Eling, C., Dröschel, D., Holz, D., Läbe, T., Förstner, W., Behnke, S., Kuhlmann, H.: Towards autonomous navigation of an uav-based mobile mapping system. In: Proc. of the Intl. Conf. on Machine Control and Guidance (MCG), pp. 136–147, Brunswick, Germany, March 2014Google Scholar
- 13.Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: A general framework for graph optimization. In: Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pp. 3607–3613, Shanghai, China, May 2011Google Scholar
- 14.Maas, H.: Image sequence based automatic multi-camera system calibration techniques. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 54(5–6), 352–359 (December 1999)Google Scholar
- 15.Mostafa, M., Schwarz, K.: Digital image georeferencing from a multiple camera system by gps/ins. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 56(1), 1–12 (June 2001)Google Scholar
- 16.Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Generic and real-time structure from motion using local bundle adjustment. Elsevier Journal on Image and Vision Computing (IVC) 27(8), 1178–1193 (July 2009)Google Scholar
- 17.Nieuwenhuisen, M., Dröschel, D., Schneider, J., Holz, D., Läbe, T., Behnke, S.: Multimodal obstacle detection and collision avoidance for micro aerial vehicles. In: Proc. of the European Conf. on Mobile Robotics (ECMR), pp. 7–12, Barcelona, Spain, September 2013Google Scholar
- 18.Schneider, J., Förstner, W.: Bundle adjustment and system calibration with points at infinity for omnidirectional camera systems. Photogrammetrie - Fernerkundung - Geoinformation (PFG) 4, 309–321 (August 2013)Google Scholar
- 19.Schneider, J., Läbe, T., Förstner, W.: Incremental real-time bundle adjustment for multi-camera systems with points at infinity. In: ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-1/W2, pp. 355–360, Rostock, Germany, September 2013Google Scholar
- 20.Schneider, J., Schindler, F., Läbe, T., Förstner, W.: Bundle adjustment for multi-camera systems with points at infinity. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. I–3, pp. 75–80, Melbourne, Australia, August 2012Google Scholar
- 21.Shi, J., Tomasi, C.: Good features to track. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 593–600, Seattle, USA, June 1994Google Scholar
- 22.Strasdat, H., Montiel, J., Davison, A.: Visual slam: Why filter? Elsevier Journal on Image and Vision Computing (IVC) 30(2), 65–77 (February 2012)Google Scholar
- 23.Tardif, J.P., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments using an omnidirectional camera. In: Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pp. 2531–2538, Nice, France, September 2008Google Scholar