Advertisement

Nature Conservation Drones for Automatic Localization and Counting of Animals

  • Jan C. van Gemert
  • Camiel R. Verschoor
  • Pascal Mettes
  • Kitso Epema
  • Lian Pin Koh
  • Serge Wich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8925)

Abstract

This paper is concerned with nature conservation by automatically monitoring animal distribution and animal abundance. Typically, such conservation tasks are performed manually on foot or after an aerial recording from a manned aircraft. Such manual approaches are expensive, slow and labor intensive. In this paper, we investigate the combination of small unmanned aerial vehicles (UAVs or “drones”) with automatic object recognition techniques as a viable solution to manual animal surveying. Since no controlled data is available, we record our own animal conservation dataset with a quadcopter drone. We evaluate two nature conservation tasks: (i) animal detection (ii) animal counting using three state-of-the-art generic object recognition methods that are particularly well-suited for on-board detection. Results show that object detection techniques for human-scale photographs do not directly translate to a drone perspective, but that light-weight automatic object detection techniques are promising for nature conservation tasks.

Keywords

Nature conservation Micro UAVs Object detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(11), 2189–2202 (2012)CrossRefGoogle Scholar
  2. 2.
    Bouché, P., Renaud, P.C., Lejeune, P., Vermeulen, C., Froment, J.M., Bangara, A., Fiongai, O., Abdoulaye, A., Abakar, R., Fay, M.: Has the final countdown to wildlife extinction in northern central african republic begun? African Journal of Ecology 48, 994–1003 (2010)CrossRefGoogle Scholar
  3. 3.
    Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L.: Introduction to Distance Sampling. Oxford University Press (2001)Google Scholar
  4. 4.
    Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L.: Advanced Distance Sampling: Estimating Abundance of Biological Populations. Oxford University Press (2004)Google Scholar
  5. 5.
    Chen, Y., Shioi, H., Montesinos, C.F., Koh, L.P., Wich, S., Krause, A.: Active detection via adaptive submodularity. In: Proceedings of The 31st International Conference on Machine Learning, pp. 55–63 (2014)Google Scholar
  6. 6.
    Cinbis, R.G., Verbeek, J., Schmid, C.: Segmentation driven object detection with fisher vectors. In: International Conference on Computer Vision (ICCV) (2013)Google Scholar
  7. 7.
    Everingham, M., Sivic, J., Zisserman, A.: Taking the bite out of automated naming of characters in tv video. Image and Vision Computing 27(5), 545–559 (2009)CrossRefGoogle Scholar
  8. 8.
    Everts, I., van Gemert, J.C., Gevers, T.: Per-patch descriptor selection using surface and scene properties. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 172–186. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Everts, I., van Gemert, J.C., Gevers, T.: Evaluation of color spatio-temporal interest points for human action recognition. IEEE Transactions on Image Processing 23(4), 1569–1580 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D.: Cascade object detection with deformable part models. In: Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  11. 11.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  12. 12.
    Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Transactions on Computers 22(1), 67–92 (1973)CrossRefGoogle Scholar
  13. 13.
    Gati, B.: Open source autopilot for academic research - the paparazzi system. In: American Control Conference (ACC), pp. 1478–1481 (2013)Google Scholar
  14. 14.
    Getzin, S., Wiegand, K., Schöning, I.: Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods in Ecology and Evolution 3, 397–404 (2012)CrossRefGoogle Scholar
  15. 15.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  16. 16.
    Hodgson, A., Kelly, N., Peel, D.: Unmanned aerial vehicles (uavs) for surveying marine fauna: a dugong case study. PloS One 8 (2013)Google Scholar
  17. 17.
    Jain, M., van Gemert, J.C., Bouthemy, P., Jegou, H., Snoek, C.: Action localization by tubelets from motion. In: Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  18. 18.
    Jones IV, G.P., Pearlstine, L.G., Percival, H.F.: An assessment of small unmanned aerial vehicles for wildlife research. Wildlife Society Bulletin 34, 750–758 (2006)CrossRefGoogle Scholar
  19. 19.
    Khan, F.S., Anwer, R.M., van de Weijer, J., Bagdanov, A., Vanrell, M., Lopez, A.M.: Color attributes for object detection. In: Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar
  20. 20.
    Koh, L.P., Wich, S.A.: Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science 5(2), 121–132 (2012)Google Scholar
  21. 21.
    Koski, W.R., Allen, T., Ireland, D., Buck, G., Smith, P.R., Macrander, A.M., Halick, M.A., Rushing, C., Sliwa, D.J., McDonald, T.L.: Evaluation of an unmanned airborne system for monitoring marine mammals. Aquatic Mammals 35(347) (2009)Google Scholar
  22. 22.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)Google Scholar
  23. 23.
    Li, H., Lin, Z., Brandt, J., Shen, X., Hua, G.: Efficient boosted exemplar-based face detection. In: Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  24. 24.
    Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, vol. 81 (1981)Google Scholar
  25. 25.
    Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of exemplar-svms for object detection and beyond. In: International Conference on Computer Vision (ICCV) (2011)Google Scholar
  26. 26.
    Mulero-Pázmány, M., Stolper, R., Essen, L.V., Negro, J.J., Sassen, T.: Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PloS One 9 (2014)Google Scholar
  27. 27.
    Pedersoli, M., Vedaldi, A., Gonzalez, J.: A coarse-to-fine approach for fast deformable object detection. In: Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  28. 28.
    van de Sande, K.E.A., Snoek, C.G.M., Smeulders, A.W.M.: Fisher and vlad with flair. In: Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  29. 29.
    Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. In: International Conference on Learning Representations (2014)Google Scholar
  30. 30.
    Tian, Y., Sukthankar, R., Shah, M.: Spatiotemporal deformable part models for action detection. In: Computer Vision and Pattern Recognition (CVPR), pp. 2642–2649 (2013)Google Scholar
  31. 31.
    Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. International Journal of Computer Vision 104(2), 154–171 (2013)CrossRefGoogle Scholar
  32. 32.
    UNEP: Elephants in the dust the african elephant crisis. a rapid response assessment (2013). www.grida.no, united Nations Environment Programme, GRID-Arendal
  33. 33.
    Van Gemert, J.C., Veenman, C.J., Geusebroek, J.M.: Episode-constrained cross-validation in video concept retrieval. IEEE Transactions on Multimedia 11(4), 780–786 (2009)CrossRefGoogle Scholar
  34. 34.
    Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: International Conference on Computer Vision (ICCV) (2009)Google Scholar
  35. 35.
    Vermeulen, C., Lejeune, P., Lisein, J., Sawadogo, P., Bouché, P.: Unmanned aerial survey of elephants. PloS One 8 (2013)Google Scholar
  36. 36.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition (CVPR) (2001)Google Scholar
  37. 37.
    Vondrick, C., Patterson, D., Ramanan, D.: Efficiently scaling up crowdsourced video annotation. International Journal of Computer Vision, 1–21 (2012)Google Scholar
  38. 38.
    WCUAVC: Wildlife conservation uav challenge. http://www.wcuavc.com/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jan C. van Gemert
    • 1
  • Camiel R. Verschoor
    • 2
    • 3
  • Pascal Mettes
    • 1
  • Kitso Epema
    • 2
  • Lian Pin Koh
    • 4
  • Serge Wich
    • 5
    • 6
  1. 1.Intelligent Systems Lab AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Dutch Unmanned Aerial SolutionsAmsterdamThe Netherlands
  3. 3.IDI SnowmobileAmsterdamThe Netherlands
  4. 4.Applied Ecology and Conservation GroupUniversity of AdelaideAdelaideAustralia
  5. 5.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
  6. 6.School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations