Workshop at the European Conference on Computer Vision

ECCV 2014: Computer Vision - ECCV 2014 Workshops pp 194-208 | Cite as

Augmenting Vehicle Localization Accuracy with Cameras and 3D Road Infrastructure Database

  • Lijun Wei
  • Bahman Soheilian
  • Valérie Gouet-Brunet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8925)

Abstract

Accurate and continuous vehicle localization in urban environments has been an important research problem in recent years. In this paper, we propose a landmark based localization method using road signs and road markings. The principle is to associate the online detections from onboard cameras with the landmarks in a pre-generated road infrastructure database, then to adjust the raw vehicle pose predicted by the inertial sensors. This method was evaluated with data sequences acquired in urban streets. The results prove the contribution of road signs and road markings for reducing the trajectory drift as absolute control points.

Keywords

Vehicle localization Road infrastructure database Road signs Road markings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies 15(5), 312–328 (2007)CrossRefGoogle Scholar
  2. 2.
    Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-to-3d matching. In: ICCV, pp. 667–674 (2011)Google Scholar
  3. 3.
    Lategahn, H., Schreiber, M., Ziegler, J., Stiller, C.: Urban localization with camera and inertial measurement unit. In: Intelligent Vehicles Symposium, pp. 719–724 (2013)Google Scholar
  4. 4.
    Royer, E., Lhuillier, M., Dhome, M., Lavest, J.: Monocular vision for mobile robot localization and autonomous navigation. International Journal of Computer Vision 74(3), 237–260 (2007)CrossRefMATHGoogle Scholar
  5. 5.
    Soheilian, B., Paparoditis, N., Boldo, D.: 3d road marking reconstruction from street-level calibrated stereo pairs. ISPRS Journal of Photogrammetry and Remote Sensing 65, 347–359 (2010)CrossRefGoogle Scholar
  6. 6.
    Soheilian, B., Paparoditis, N., Vallet, B.: Detection and 3d reconstruction of traffic signs from multiple view color images. ISPRS Journal of Photogrammetry and Remote Sensing 77, 1–20 (2013)CrossRefGoogle Scholar
  7. 7.
    Schindler, A.: Vehicle self-localization with high-precision digital maps. In: IEEE Intelligent Vehicles Symposium (IV), pp. 141–146, June 2013Google Scholar
  8. 8.
    Schreiber, M., Knoppel, C., Franke, U.: Laneloc: Lane marking based localization using highly accurate maps. In: IEEE Intelligent Vehicles Symposium (IV), pp. 449–454, June 2013Google Scholar
  9. 9.
    Lategahn, H., Stiller, C.: Vision only localization. IEEE Transactions on Intelligent Transportation Systems 15(3), 1246–1257 (2014)CrossRefGoogle Scholar
  10. 10.
    Maldonado-Bascon, S., Lafuente-Arroyo, S., Siegmann, P., Gomez-Moreno, H., Acevedo-Rodriguez, F.: Traffic sign recognition system for inventory purposes. In: IEEE Intelligent Vehicles Symposium, pp. 590–595 (2008)Google Scholar
  11. 11.
    Segvic, S., Brkic, K., Kalafatic, Z., Stanisavljevic, V., Sevrovic, M., Budimir, D., Dadic, I.: A computer vision assisted geoinformation inventory for traffic infrastructure. In: 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 66–73 (2010)Google Scholar
  12. 12.
    Soheilian, B., Tournaire, O., Paparoditis, N., Vallet, B., Papelard, J.P.: Generation of an integrated 3d city model with visual landmarks for autonomous navigation in dense urban areas. In: IEEE Intelligent Vehicles Symposium (IV), pp. 304–309, June 2013Google Scholar
  13. 13.
    Olson, E., Leonard, J., Teller, S.: Fast iterative optimization of pose graphs with poor initial estimates. In: ICRA pp. 2262–2269 (2006)Google Scholar
  14. 14.
    Neira, J., Tardós, J.D.: Data association in stochastic mapping using the joint compatibility test. IEEE T. Robotics and Automation 17(6), 890–897 (2001)CrossRefGoogle Scholar
  15. 15.
    Nieto, J.I., Guivant, J.E., Nebot, E.M., Thrun, S.: Real time data association for fastslam. In: ICRA, pp. 412–418 (2003)Google Scholar
  16. 16.
    Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic signs in real-world images: The German Traffic Sign Detection Benchmark. In: International Joint Conference on Neural Networks. Number 1288 (2013)Google Scholar
  17. 17.
    Zamir, Amir Roshan, Shah, Mubarak: Accurate image localization based on google maps street view. In: Daniilidis, Kostas, Maragos, Petros, Paragios, Nikos (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 255–268. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lijun Wei
    • 1
  • Bahman Soheilian
    • 1
  • Valérie Gouet-Brunet
    • 1
  1. 1.IGN, SRIG, MATISUniversité Paris-EstSaint MandéFrance

Personalised recommendations