Advertisement

JenAesthetics Subjective Dataset: Analyzing Paintings by Subjective Scores

  • Seyed Ali AmirshahiEmail author
  • Gregor Uwe Hayn-Leichsenring
  • Joachim Denzler
  • Christoph Redies
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8925)

Abstract

Over the last few years, researchers from the computer vision and image processing community have joined other research groups in searching for the bases of aesthetic judgment of paintings and photographs. One of the most important issues, which has hampered research in the case of paintings compared to photographs, is the lack of subjective datasets available for public use. This issue has not only been mentioned in different publications, but was also widely discussed at different conferences and workshops. In the current work, we perform a subjective test on a recently released dataset of aesthetic paintings. The subjective test not only collects scores based on the subjective aesthetic quality, but also on other properties that have been linked to aesthetic judgment.

Keywords

Computational aesthetics Aesthetic Beauty Color Content Composition Paintings Subjective dataset JenAesthetics dataset 

References

  1. 1.
    Amirshahi, S.A., Denzler, J., Redies, C.: JenAesthetics-a public dataset of paintings for aesthetic research. Computer Vision Group, University of Jena Germany, Tech. rep. (2013)Google Scholar
  2. 2.
    Amirshahi, S.A., Hayn-Leichsenring, G.U., Denzler, J., Redies, C.: Color: A crucial factor for aesthetic quality assessment in a subjective database of paintings. In: 12th Congress of the International Colour Association (AIC). Newcastle, UK (July 2013)Google Scholar
  3. 3.
    Amirshahi, S.A., Hayn-Leichsenring, G.U., Denzler, J., Redies, C.: Evaluating the rule of thirds in photographs and paintings. Art & Perception 2(1–2), 163–182 (2014)CrossRefGoogle Scholar
  4. 4.
    Amirshahi, S.A., Koch, M., Denzler, J., Redies, C.: PHOG analysis of self-similarity in aesthetic images. In: IS&T/SPIE Electronic Imaging, pp. 82911J–82911J. International Society for Optics and Photonics (2012)Google Scholar
  5. 5.
    Amirshahi, S.A., Redies, C., Denzler, J.: How self-similar are artworks at different levels of spatial resolution? In: Proceedings of the Symposium on Computational Aesthetics, pp. 93–100. ACM (2013)Google Scholar
  6. 6.
    Bhattacharya, S., Sukthankar, R., Shah, M.: A framework for photo-quality assessment and enhancement based on visual aesthetics. In: Proceedings of the International Conference on Multimedia, pp. 271–280. ACM (2010)Google Scholar
  7. 7.
    Condorovici, R.G., Florea, C., Vrânceanu, R., Vertan, C.: Perceptually-inspired artistic genre identification system in digitized painting collections. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 687–696. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  9. 9.
    Datta, R., Li, J., Wang, J.Z.: Algorithmic inferencing of aesthetics and emotion in natural images: An exposition. In: IEEE 15th International Conference on Image Processing (ICIP), pp. 105–108. IEEE (2008)Google Scholar
  10. 10.
    Demetriou, M.L., Hardeberg, J.Y., Adelmann, G.: Computer-aided reclamation of lost art. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 551–560. Springer, Heidelberg (2012) Google Scholar
  11. 11.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)Google Scholar
  12. 12.
    Hoenig, F.: Defining computational aesthetics. In: Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging, pp. 13–18. Eurographics Association (2005)Google Scholar
  13. 13.
    International Telecommunication Union: Recommendation ITU-R BT.500-11: Methodology for the subjective assessment of the quality of television pictures. Tech. rep., International Telecommunication Union/ITU Radiocommunication Sector (2009)Google Scholar
  14. 14.
    Ishihara, S.: Test for colour-blindness. Hongo Harukicho, Tokyo (1917) Google Scholar
  15. 15.
    JenAesthetics: JenAesthetics dataset (2013). http://www.inf-cv.uni-jena.de/en/jenaesthetics
  16. 16.
    Karvonen, K.: The beauty of simplicity. In: Proceedings on the 2000 Conference on Universal Usability, pp. 85–90. ACM (2000)Google Scholar
  17. 17.
    Ke, Y., Tang, X., Jing, F.: The design of high-level features for photo quality assessment. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 419–426. IEEE (2006)Google Scholar
  18. 18.
    Li, C., Chen, T.: Aesthetic visual quality assessment of paintings. IEEE Journal of Selected Topics in Signal Processing 3(2), 236–252 (2009)CrossRefGoogle Scholar
  19. 19.
    Luo, W., Wang, X., Tang, X.: Content-based photo quality assessment. In: IEEE International Conference on Computer Vision (ICCV), pp. 2206–2213. IEEE (2011)Google Scholar
  20. 20.
    Mai, L., Le, H., Niu, Y., Liu, F.: Rule of thirds detection from photograph. In: IEEE International Symposium on Multimedia (ISM), pp. 91–96. IEEE (2011)Google Scholar
  21. 21.
    Mallon, B., Redies, C., Hayn-Leichsenring, G.U.: Beauty in abstract paintings: Perceptual contrast and statistical properties. Frontiers in Human Neuroscience 8(161) (2014)Google Scholar
  22. 22.
    Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): Imageclef - Experimental evaluation in visual information retrieval, vol. 32. The Information Retrieval Series (2010)Google Scholar
  23. 23.
    Murray, N., Marchesotti, L., Perronnin, F.: Ava: A large-scale database for aesthetic visual analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2408–2415. IEEE (2012)Google Scholar
  24. 24.
    Oncu, A.I., Deger, F., Hardeberg, J.Y.: Evaluation of digital inpainting quality in the context of artwork restoration. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 561–570. Springer, Heidelberg (2012) Google Scholar
  25. 25.
    Palmer, S.E., Schloss, K.B.: An ecological valence theory of human color preference. Proceedings of the National Academy of Sciences USA 107(19), 8877–8882 (2010)CrossRefGoogle Scholar
  26. 26.
    Palmer, S.E., Schloss, K.B., Sammartino, J.: Visual aesthetics and human preference. Annual Review of Psychology 64, 77–107 (2013)CrossRefGoogle Scholar
  27. 27.
    Peirce, J.W.: PsychoPy-Psychophysics software in Python. Journal of Neuroscience Methods 162(1–2), 8–13 (2007). http://www.sciencedirect.com/science/article/pii/S0165027006005772 CrossRefGoogle Scholar
  28. 28.
    Redies, C., Amirshahi, S.A., Koch, M., Denzler, J.: PHOG-Derived aesthetic measures applied to color photographs of artworks, natural scenes and objects. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 522–531. Springer, Heidelberg (2012) Google Scholar
  29. 29.
    Redies, C., Hänisch, J., Blickhan, M., Denzler, J.: Artists portray human faces with the fourier statistics of complex natural scenes. Network: Computation in Neural Systems 18(3), 235–248 (2007)CrossRefGoogle Scholar
  30. 30.
    Redies, C., Hasenstein, J., Denzler, J., et al.: Fractal-like image statistics in visual art: similarity to natural scenes. Spatial Vision 21(1–2), 137–148 (2007)CrossRefGoogle Scholar
  31. 31.
    Schloss, K.B., Palmer, S.E.: An ecological valence theory of human color preferences. Journal of Vision 9(8), 358–358 (2009)CrossRefGoogle Scholar
  32. 32.
    Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: A subjective study to evaluate video quality assessment algorithms. In: IS&T/SPIE Electronic Imaging, pp. 75270H–75270H. International Society for Optics and Photonics (2010)Google Scholar
  33. 33.
    Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: Study of subjective and objective quality assessment of video. IEEE Transactions on Image Processing 19(6), 1427–1441 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing 15(11), 3440–3451 (2006)CrossRefGoogle Scholar
  35. 35.
    Svobodova, K., Sklenicka, P., Molnarova, K., Vojar, J.: Does the composition of landscape photographs affect visual preferences? The rule of the golden section and the position of the horizon. Journal of Environmental Psychology 38, 143–152 (2014)CrossRefGoogle Scholar
  36. 36.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  37. 37.
    Liu, X., Pedersen, M., Hardeberg, J.Y.: CID:IQ – A New Image Quality Database. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 193–202. Springer, Heidelberg (2014) Google Scholar
  38. 38.
    Xue, S.F., Lin, Q., Tretter, D.R., Lee, S., Pizlo, Z., Allebach, J.: Investigation of the role of aesthetics in differentiating between photographs taken by amateur and professional photographers. In: IS&T/SPIE Electronic Imaging, pp. 83020D–83020D. International Society for Optics and Photonics (2012)Google Scholar
  39. 39.
    Yanulevskaya, V., Uijlings, J., Bruni, E., Sartori, A., Zamboni, E., Bacci, F., Melcher, D., Sebe, N.: In the eye of the beholder: employing statistical analysis and eye tracking for analyzing abstract paintings. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 349–358. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Seyed Ali Amirshahi
    • 1
    • 2
    Email author
  • Gregor Uwe Hayn-Leichsenring
    • 2
  • Joachim Denzler
    • 1
  • Christoph Redies
    • 2
  1. 1.Computer Vision GroupFriedrich Schiller University JenaJenaGermany
  2. 2.Experimental Aesthetics Group, Institute of Anatomy IJena University HospitalJenaGermany

Personalised recommendations