Advertisement

Hierarchical MPC-Based Control of an Irrigation Canal

  • A. Sadowska
  • P. J. van Overloop
  • C. Burt
  • B. De Schutter
Part of the Operations Research/Computer Science Interfaces Series book series (ORCS, volume 58)

Abstract

We discuss the problem of controlling an irrigation canal to accommodate fast changes in the canal state in response to events such as offtakes announced with no time lag or sudden weather changes. Our proposed approach comprises a hierarchical controller consisting of two layers with decentralized PI controllers in the lower layer and a centralized MPC-based event-driven controller in the higher layer. By incorporating the hierarchical controller structure we achieve a better performance than with the PI controllers only as currently in use in the real world, while barely increasing the communication requirements and remaining robust to temporary communication link breakdowns as the lower layer can work independently of the higher layer when the links are being restored. The operation of the higher-layer controller relies on controlling the head gate and modifying the settings of the local controllers. This way, an acceleration of water transporting is attained as the controller allows for rapid reactions to the need for more water or less water at a location. Specifically, when there is a sudden need for water, the storage in some of the pools is used to temporarily borrow water. Alternatively, when there is too much water at a location, it can be stored for some time in upstream or downstream pools before the PI controllers manage to remove the water.

Keywords

Model Predictive Control Irrigation Canal Prediction Horizon Local Controller Main Canal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research supported by the European Union Seventh Framework Programme [FP7/2007–2013] under grant agreement no. 257462 HYCON2 Network of Excellence.

References

  1. 1.
    Álvarez A, Ridao M, Ramirez D, Sánchez L. Constrained predictive control of an irrigation canal. J Irrig Drain Eng. 2013;139(10):841–854.CrossRefGoogle Scholar
  2. 2.
    Bemporad A, Morari M. Control of systems integrating logic, dynamics, and constraints. Automatica 1999;35(3):407–427.CrossRefGoogle Scholar
  3. 3.
    Bos G. Discharge measurement structures. In: International Institute for Land Reclamation and Improvement, Publication 20. ILRI; 1976.Google Scholar
  4. 4.
    Camacho EF, Bordons C. Model predictive control. Berlin Heidelberg: Springer; 1999.CrossRefGoogle Scholar
  5. 5.
    Cantoni M, Weyer E, Li Y, Ooi SK, Mareels I, Ryan M. Control of large-scale irrigation networks. In: Proc IEEE. 2007;95(1):75–91.Google Scholar
  6. 6.
    Chow VT (1959) Open-channel hydraulics. McGraw-Hill civil engineering. London: McGraw-Hill; 1959.Google Scholar
  7. 7.
    Dahlin EB. Designing and tuning digital controllers. Instrum Control Syst. 1968;41(6):77–83.Google Scholar
  8. 8.
    De Schutter B, De Moor B. Optimal traffic light control for a single intersection. Eur J Control. 1998;4(3):260–276.CrossRefGoogle Scholar
  9. 9.
    Li Y, Cantoni M (2008) Distributed controller design for open water channels. In: Proceedings of the 17th IFAC World Congress, Seoul; 2008. pp. 10033–10038Google Scholar
  10. 10.
    Litrico X, Fromion V, Baume J-P, Rijo M. Modelling and PI controller design for an irrigation canal. In: Proceedings of the 2003 European Control Conference, Cambridge; 2003.Google Scholar
  11. 11.
    Litrico X, Malaterre P-O, Baume J-P, Vion P-Y, Ribot-Bruno J. Automatic tuning of PI controllers for an irrigation canal pool. J Irrig Drain Eng ASCE. 2007;133:27–37.CrossRefGoogle Scholar
  12. 12.
    Maciejowski JM. Predictive control with constraints. Essex: Prentice Hall; 2002.Google Scholar
  13. 13.
    Malaterre P-O. Control of irrigation canals: why and how? In: Proceedings of the international workshop on numerical modelling of hydrodynamics for water resources, Zaragoza; 2007. pp. 271–293.Google Scholar
  14. 14.
    Malaterre P-O, Baume JP. Modeling and regulation of irrigation canals: existing applications and ongoing researches. In: Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, San Diego; 1998. pp 3850–3855.Google Scholar
  15. 15.
    Negenborn RR, van Overloop P-J, Keviczky T, De Schutter B. Distributed model predictive control for irrigation canals. Netw Heterog Media. 2009;4(2):359–380.CrossRefGoogle Scholar
  16. 16.
    Ooi SK, Weyer E. Control design for an irrigation channel from physical data. Control Eng Pract. 2008;16(9):1132–1150.CrossRefGoogle Scholar
  17. 17.
    Perkins S. Is agriculture sucking fresh water dry? Science NOW, online. Published 13 Feb 2012.Google Scholar
  18. 18.
    Sadowska A, De Schutter B, van Overloop P-J. Delivery-oriented hierarchical predictive control of an irrigation canal: event-driven versus time-driven approaches. IEEE Trans Control Syst Technol. 2015, doi:  10.1109/TCST.2014.2381600 Google Scholar
  19. 19.
    Sadowska A, van Overloop P-J, Burt C, De Schutter B. Hierarchical operation of water level controllers: formal analysis and application on a large scale irrigation canal. Water Resour Manag. 2014;28(14):4999–5019CrossRefGoogle Scholar
  20. 20.
    Schuurmans J, Clemmens A, Dijkstra S, Hof A, Brouwer R. Modeling of irrigation and drainage canals for controller design. J Irrig Drain Eng. 1999;125(6):338–344.CrossRefGoogle Scholar
  21. 21.
    Schuurmans J, Hof A, Dijkstra S, Bosgra O, Brouwer R. Simple water level controller for irrigation and drainage canals. J Irrig Drain Eng. 1999;125(4):189–195.CrossRefGoogle Scholar
  22. 22.
    Silva P, Botto MA, Figueiredo J, Rijo M. Model predictive control of an experimental water canal. In: Proceedings of the 2007 European Control Conference, Kos; 2007. pp. 2977–2984.Google Scholar
  23. 23.
    Tian X, Maestre JM, van Overloop PJ, Negenborn RR. Distributed model predictive control for multi-objective water system management. In: Proceedings of the 10th International Conference on Hydroinformatics, Hamburg, July 2012. Paper 175.Google Scholar
  24. 24.
    van Ekeren H, Negenborn RR, van Overloop PJ, De Schutter B. Hybrid model predictive control using time-instant optimization for the Rhine-Meuse delta. In: Proceedings of the 2011 IEEE International Conference on Networking, Sensing and Control, Barcelona; 2011. pp. 216–221.Google Scholar
  25. 25.
    van Ekeren H, Negenborn RR, van Overloop PJ, De Schutter B. Time-instant optimization for hybrid model predictive control of the Rhine-Meuse Delta. J. Hydroinformatics. 2013;15(2):271–292.CrossRefGoogle Scholar
  26. 26.
    van Overloop PJ, Clemmens AJ, Strand RJ, Wagemaker RMJ. Real-time implementation of model predictive control on MSIDD’s WM canal. J Irrig Drain Eng ASCE. 2010;136(11): 747–756.CrossRefGoogle Scholar
  27. 27.
    van Overloop PJ, Schuurmans J, Brouwer R, Burt C. Multiple-model optimization of proportional integral controllers on canals. J Irrig Drain Eng ASCE. 2005;131(2):190–196.CrossRefGoogle Scholar
  28. 28.
    Xu M, Negenborn RR, van Overloop PJ, van de Giesen NC. De Saint-Venant equations-based model predictive control of open channel flow. Adv Water Res. 2012;49:37–45.Google Scholar
  29. 29.
    Ziegler JG, Nichols NB. Optimum Settings for Automatic Controllers. Trans ASME. 1942;64:759–768.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Sadowska
    • 1
  • P. J. van Overloop
    • 2
  • C. Burt
    • 3
  • B. De Schutter
    • 1
  1. 1.Delft Center for Systems and ControlDelft University of TechnologyDelftThe Netherlands
  2. 2.Water Resources ManagementDelft University of TechnologyDelftThe Netherlands
  3. 3.Irrigation Training and Research Center (ITRC)California Polytechnic State UniversitySan Luis ObispoUSA

Personalised recommendations