Finding Network Motifs Using MCMC Sampling

Part of the Studies in Computational Intelligence book series (SCI, volume 597)

Abstract

Scientists have shown that network motifs are key building block of various biological networks. Most of the existing exact methods for finding network motifs are inefficient simply due to the inherent complexity of this task. In recent years, researchers are considering approximate methods that save computation by sacrificing exact counting of the frequency of potential motifs. However, these methods are also slow when one considers the motifs of larger size. In this work, we propose two methods for approximate motif finding, namely SRW-rw, and MHRW based on Markov Chain Monte Carlo (MCMC) sampling. Both the methods are significantly faster than the best of the existing methods, with comparable or better accuracy. Further, as the motif size grows the complexity of the proposed methods grows linearly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, I., Albert, R.: Conserved network motifs allow protein–protein interaction prediction. Bioinformatics 20(18), 3346–3352 (2004)CrossRefGoogle Scholar
  2. 2.
    Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in Facebook: A Case Study of Unbiased Sampling of OSNs. In: Proc. of IEEE INFOCOM, pp. 1–9 (2010)Google Scholar
  3. 3.
    Goodman, L.A.: Snowball sampling. Ann. Math. Statist. 32, 148–170 (1961)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 92–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Itzkovitz, S., Alon, U.: Subgraphs and network motifs in geometric networks. Physical Review E, Statistical, Nonlinear, and Soft Matter PhysicsGoogle Scholar
  6. 6.
    Juszczyszyn, K., Kazienko, P., Musiał, K.: Local topology of social network based on motif analysis. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 97–105. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Kashani, Z., Ahrabian, H., Elahi, E., Nowzari-Dalini, A., Ansari, E., Asadi, S., Mohammadi, S., Schreiber, F., Masoudi-Nejad, A.: Kavosh: a new algorithm for finding network motifs. BMC Bioinformatics 10(1), 318 (2009)CrossRefGoogle Scholar
  8. 8.
    Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. J. Bioinformatics 20(11), 1746–1758 (2004)CrossRefGoogle Scholar
  9. 9.
    Li, X., Stones, D.S., Wang, H., Deng, H., Liu, X., Wang, G.: Netmode: Network motif detection without nauty. PLoS One 7(12) (December 2012)Google Scholar
  10. 10.
    Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: On the uniform generation of random graphs with prescribed degree sequences (May 2004)Google Scholar
  11. 11.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  12. 12.
    Omidi, S., Schreiber, F., Masoudi-Nejad, A.: MODA: an efficient algorithm for network motif discovery in biological networks. Genes and Genetic Systems 84(5), 385–395 (2009)CrossRefGoogle Scholar
  13. 13.
    Ribeiro, P., Silva, F.: G-tries: an efficient data structure for discovering network motifs. In: Proc. ACM Symp. on Applied Computing, pp. 1559–1566 (2010)Google Scholar
  14. 14.
    Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichia coli. Nature Genetics 31, 1061–4036 (2002)CrossRefGoogle Scholar
  15. 15.
    Wang, P., Lui, J., Ribeiro, B., Towsley, D., Zhao, J., Guan, X.: Efficiently estimating motif statistics of large networks. ACM Trans. Knowl. Discov. Data 9(2) (2014)Google Scholar
  16. 16.
    Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 347–359 (2006)CrossRefGoogle Scholar
  17. 17.
    Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proc. of 2nd International Conference on Data Mining, pp. 721–724. IEEE Computer Society (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer and Info. ScienceIndiana University-Purdue UniversityIndianapolisUSA

Personalised recommendations