Redefining the Chaperone Mechanism of sHsps: Not Just Holdase Chaperones

Part of the Heat Shock Proteins book series (HESP, volume 8)

Abstract

The small heat-shock proteins (sHsps) are molecular chaperones that play a fundamental role in maintaining cellular protein homeostasis (proteostasis) by preventing the aggregation of destabilised proteins. They are generally described as ‘holdase’ type chaperones since they have the ability to bind partially folded intermediate states of target proteins, in an ATP-independent manner, and, in doing so, they can form high molecular weight complexes with some of them. However, recent work has shown that the ability of sHsps to interact with target proteins is multi-faceted. This review highlights the mechanisms by which sHsps can interact with aggregation-prone target proteins and proposes that they should be considered as protein ‘stabilisers’ rather than ‘holdase’ chaperones.

Keywords

Protein aggregation Heat shock proteins Amyloid fibrils Proteostasis Crystallin 

Abbreviations

RCM

Reduced and carboxymethylated

RCMα-LA

Reduced and carboxymethylated α-lactalbumin

sHsp(s)

small Heat shock protein(s).

αA-C

αA-crystallin

αB-C

αB-crystallin

α-LA

α-lactalbumin

References

  1. Acunzo J, Katsogiannou M, Rocchi P (2012) Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 44(10):1622–1631PubMedCrossRefGoogle Scholar
  2. Ahner A, Gong X, Schmidt BZ, Peters KW, Rabeh WM, Thibodeau PH, Lukacs GL, Frizzell RA (2013) Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway. Mol Biol Cell 24(2):74–84PubMedCentralPubMedCrossRefGoogle Scholar
  3. Aquilina JA, Benesch JL, Ding LL, Yaron O, Horwitz J, Robinson CV (2005) Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of alphaA-crystallin truncation. J Biol Chem 280(15):14485–14491PubMedCrossRefGoogle Scholar
  4. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431(7010):805–810PubMedCrossRefGoogle Scholar
  5. Augusteyn RC (2004) Dissociation is not required for alpha-crystallin’s chaperone function. Exp Eye Res 79(6):781–784PubMedCrossRefGoogle Scholar
  6. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919PubMedCrossRefGoogle Scholar
  7. Barral JM, Broadley SA, Schaffar G, Hartl FU (2004) Roles of molecular chaperones in protein misfolding diseases. Semin Cell Dev Biol 15(1):17–29PubMedCrossRefGoogle Scholar
  8. Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279(9):7566–7575PubMedCrossRefGoogle Scholar
  9. Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem 379(3):245–259PubMedGoogle Scholar
  10. Benesch JL, Ruotolo BT (2011) Mass spectrometry: come of age for structural and dynamical biology. Curr Opin Struct Biol 21(5):641–649PubMedCentralPubMedCrossRefGoogle Scholar
  11. Benesch JLP, Aquilina JA, Ruotolo BT, Sobott F, Robinson CV (2006) Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem Biol 13(6):597–605PubMedCrossRefGoogle Scholar
  12. Binger KJ, Ecroyd H, Yang S, Carver JA, Howlett GJ, Griffin MD (2013) Avoiding the oligomeric state: AlphaB-crystallin inhibits fragmentation and induces dissociation of apolipoprotein C-II amyloid fibrils. FASEB J 27(3):1214–1222PubMedCrossRefGoogle Scholar
  13. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511PubMedCrossRefGoogle Scholar
  14. Bukach OV, Seit-Nebi AS, Marston SB, Gusev NB (2004) Some properties of human small heat shock protein Hsp20 (HspB6). Eur J Biochem 271(2):291–302PubMedCrossRefGoogle Scholar
  15. Carra S, Seguin SJ, Lambert H, Landry J (2008) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 283(3):1437–1444PubMedCrossRefGoogle Scholar
  16. Carra S, Crippa V, Rusmini P, Boncoraglio A, Minoia M, Giorgetti E, Kampinga HH, Poletti A (2012) Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog Neurobiol 97(2):83–100PubMedCrossRefGoogle Scholar
  17. Carver JA, Aquilina JA, Cooper PG, Williams GA, Truscott RJ (1994) Alpha-crystallin: molecular chaperone and protein surfactant. Biochim Biophys Acta 1204(2):195–206PubMedCrossRefGoogle Scholar
  18. Carver JA, Guerreiro N, Nicholls KA, Truscott RJ (1995) On the interaction of alpha-crystallin with unfolded proteins. Biochim Biophys Acta 1252(2):251–260PubMedCrossRefGoogle Scholar
  19. Carver JA, Lindner RA, Lyon C, Canet D, Hernandez H, Dobson CM, Redfield C (2002) The interaction of the molecular chaperone alpha-crystallin with unfolding alpha-lactalbumin: a structural and kinetic spectroscopic study. J Mol Biol 318(3):815–827PubMedCrossRefGoogle Scholar
  20. Carver JA, Rekas A, Thorn DC, Wilson MR (2003) Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function? IUBMB Life 55(12):661–668PubMedCrossRefGoogle Scholar
  21. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298PubMedCrossRefGoogle Scholar
  22. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366PubMedCrossRefGoogle Scholar
  23. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313(5793):1604–1610PubMedCrossRefGoogle Scholar
  24. Colon W, Kelly JW (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31(36):8654–8660PubMedCrossRefGoogle Scholar
  25. Cremades N, Cohen SI, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, Bertoncini CW, Wood NW, Knowles TP, Dobson CM, Klenerman D (2012) Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell 149(5):1048–1059PubMedCentralPubMedCrossRefGoogle Scholar
  26. Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, Galbiati M, Fontana E, Marino M, Carra S, Bendotti C, De Biasi S, Poletti A (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19(17):3440–3456PubMedCrossRefGoogle Scholar
  27. de Thonel A, Le Mouel A, Mezger V (2012) Transcriptional regulation of small HSP-HSF1 and beyond. Int J Biochem Cell Biol 44(10):1593–1612PubMedCrossRefGoogle Scholar
  28. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24(9):329–332PubMedCrossRefGoogle Scholar
  29. Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 356(1406):133–145PubMedCentralPubMedCrossRefGoogle Scholar
  30. Dobson CM (2002) Getting out of shape. Nature 418(6899):729–730PubMedCrossRefGoogle Scholar
  31. Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890PubMedCrossRefGoogle Scholar
  32. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41(21):6573–6582PubMedCrossRefGoogle Scholar
  33. Ecroyd H, Carver JA (2008) Unraveling the mysteries of protein folding and misfolding. IUBMB Life 60(12):769–774PubMedCrossRefGoogle Scholar
  34. Ecroyd H, Koudelka T, Thorn DC, Williams DM, Devlin G, Hoffmann P, Carver JA (2008) Dissociation from the oligomeric state is the rate-limiting step in amyloid fibril formation by kappa-casein. J Biol Chem 283(14):9012–9022PubMedCentralPubMedCrossRefGoogle Scholar
  35. Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16(2):221–229PubMedCentralPubMedCrossRefGoogle Scholar
  36. Esposito G, Garvey M, Alverdi V, Pettirossi F, Corazza A, Fogolari F, Polano M, Mangione PP, Giorgetti S, Stoppini M, Rekas A, Bellotti V, Heck AJ, Carver JA (2013) Monitoring the interaction between beta2-microglobulin and the molecular chaperone alphaB-crystallin by NMR and mass spectrometry: AlphaB-crystallin dissociates beta2-microglobulin oligomers. J Biol Chem 288(24):17844–17858PubMedCentralPubMedCrossRefGoogle Scholar
  37. Gong B, Lim MC, Wanderer J, Wyttenbach A, Morton AJ (2008) Time-lapse analysis of aggregate formation in an inducible PC12 cell model of Huntington’s disease reveals time-dependent aggregate formation that transiently delays cell death. Brain Res Bull 75(1):146–157PubMedCrossRefGoogle Scholar
  38. Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A 95(8):4224–4228PubMedCentralPubMedCrossRefGoogle Scholar
  39. Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407PubMedCrossRefGoogle Scholar
  40. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332PubMedCrossRefGoogle Scholar
  41. Hatters DM, Lindner RA, Carver JA, Howlett GJ (2001) The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II. J Biol Chem 276(36):33755–33761PubMedCrossRefGoogle Scholar
  42. Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66(2):191–197PubMedCrossRefGoogle Scholar
  43. Hohfeld J, Cyr DM, Patterson C (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2(10):885–890PubMedCentralPubMedCrossRefGoogle Scholar
  44. Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89(21):10449–10453PubMedCentralPubMedCrossRefGoogle Scholar
  45. Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A 79(7):2360–2364PubMedCentralPubMedCrossRefGoogle Scholar
  46. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268(3):1517–1520PubMedGoogle Scholar
  47. Jiménez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci U S A 99(14):9196–9201PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kato K, Hasegawa K, Goto S, Inaguma Y (1994) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269(15):11274–11278PubMedGoogle Scholar
  49. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489PubMedCrossRefGoogle Scholar
  50. Kikis EA, Gidalevitz T, Morimoto RI (2010) Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol 694:138–159PubMedCentralPubMedGoogle Scholar
  51. Kim MV, Seit-Nebi AS, Marston SB, Gusev NB (2004) Some properties of human small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun 315(4):796–801PubMedCrossRefGoogle Scholar
  52. Knowles TP, Waudby CA, Devlin GL, Cohen SI, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326(5959):1533–1537PubMedCrossRefGoogle Scholar
  53. Koteiche HA, McHaourab HS (2003) Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in alphaB-crystallin. J Biol Chem 278(12):10361–10367PubMedCrossRefGoogle Scholar
  54. Kulig M, Ecroyd H (2012) The small heat-shock protein alphaB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of alpha-lactalbumin. Biochem J 448(3):343–352PubMedCrossRefGoogle Scholar
  55. Laurence TA, Kwon Y, Yin E, Hollars CW, Camarero JA, Barsky D (2007) Correlation spectroscopy of minor fluorescent species: signal purification and distribution analysis. Biophys J 92(6):2184–2198PubMedCentralPubMedCrossRefGoogle Scholar
  56. Lee SJ, Lim HS, Masliah E, Lee HJ (2011) Protein aggregate spreading in neurodegenerative diseases: problems and perspectives. Neurosci Res 70(4):339–348PubMedCentralPubMedCrossRefGoogle Scholar
  57. Lindner RA, Treweek TM, Carver JA (2001) The molecular chaperone alpha-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of alpha-lactalbumin. Biochem J 354(1):79–87PubMedCentralPubMedCrossRefGoogle Scholar
  58. Loveland AB, Habuchi S, Walter JC, van Oijen AM (2012) A general approach to break the concentration barrier in single-molecule imaging. Nat Methods 9(10):987–992PubMedCentralPubMedCrossRefGoogle Scholar
  59. Lowe J, McDermott H, Pike I, Spendlove I, Landon M, Mayer RJ (1992) AlphaB-crystallin expression in non-lenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease. J Pathol 166(1):61–68PubMedCrossRefGoogle Scholar
  60. Macario AJ, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353(14):1489–1501PubMedCrossRefGoogle Scholar
  61. McHaourab HS, Dodson EK, Koteiche HA (2002) Mechanism of chaperone function in small heat shock proteins. Two-mode binding of the excited states of T4 lysozyme mutants by alphaA-crystallin. J Biol Chem 277(43):40557–40566PubMedCrossRefGoogle Scholar
  62. McLean PJ, Kawamata H, Shariff S, Hewett J, Sharma N, Ueda K, Breakefield XO, Hyman BT (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem 83(4):846–854PubMedCrossRefGoogle Scholar
  63. Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo AP (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human alphaB-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154(1):363–374PubMedGoogle Scholar
  64. Morimoto RI, Cuervo AM (2009) Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J Gerontol A Biol Sci Med Sci 64(2):167–170PubMedCrossRefGoogle Scholar
  65. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22PubMedCrossRefGoogle Scholar
  66. Ormsby AR, Ramdzan YM, Mok YF, Jovanoski KD, Hatters DM (2013) A platform to view huntingtin exon 1 aggregation flux in the cell reveals divergent influences from chaperones hsp40 and hsp70. J Biol Chem 288(52):37192–37203PubMedCentralPubMedCrossRefGoogle Scholar
  67. Pountney DL, Treweek TM, Chataway T, Huang Y, Chegini F, Blumbergs PC, Raftery MJ, Gai WP (2005) AlphaB-crystallin is a major component of glial cytoplasmic inclusions in multiple system atrophy. Neurotox Res 7(1–2):77–85PubMedCrossRefGoogle Scholar
  68. Preville X, Salvemini F, Giraud S, Chaufour S, Paul C, Stepien G, Ursini MV, Arrigo AP (1999) Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 247(1):61–78PubMedCrossRefGoogle Scholar
  69. Quintas A, Saraiva MJ, Brito RM (1999) The tetrameric protein transthyretin dissociates to a non-native monomer in solution. A novel model for amyloidogenesis. J Biol Chem 274(46):32943–32949PubMedCrossRefGoogle Scholar
  70. Rabinovici GD, Jagust WJ (2009) Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo. Behav Neurol 21(1):117–128PubMedCentralPubMedCrossRefGoogle Scholar
  71. Rao PV, Horwitz J, Zigler JS Jr (1993) Alpha-crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochem Biophys Res Commun 190(3):786–793PubMedCrossRefGoogle Scholar
  72. Regini JW, Ecroyd H, Meehan S, Bremmell K, Clarke MJ, Lammie D, Wess T, Carver JA (2010) The interaction of unfolding alpha-lactalbumin and malate dehydrogenase with the molecular chaperone alphaB-crystallin: a light and X-ray scattering investigation. Mol Vis 16:2446–2456PubMedCentralPubMedGoogle Scholar
  73. Rekas A, Adda CG, Aquilina JA, Barnham KJ, Sunde M, Galatis D, Williamson NA, Masters CL, Anders RF, Robinson CV, Cappai R, Carver JA (2004) Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol 340(5):1167–1183PubMedCrossRefGoogle Scholar
  74. Rekas A, Jankova L, Thorn DC, Cappai R, Carver JA (2007) Monitoring the prevention of amyloid fibril formation by alpha-crystallin. Temperature dependence and the nature of the aggregating species. FEBS J 274(24):6290–6304PubMedCrossRefGoogle Scholar
  75. Renkawek K, Bosman GJ, de Jong WW (1994) Expression of small heat-shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol 87(5):511–519PubMedCrossRefGoogle Scholar
  76. Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274(27):18947–18956PubMedCrossRefGoogle Scholar
  77. Sathish HA, Stein RA, Yang G, McHaourab HS (2003) Mechanism of chaperone function in small heat-shock proteins. Fluorescence studies of the conformations of T4 lysozyme bound to alphaB-crystallin. J Biol Chem 278(45):44214–44221PubMedCrossRefGoogle Scholar
  78. Schmitz C, Rutten BP, Pielen A, Schafer S, Wirths O, Tremp G, Czech C, Blanchard V, Multhaup G, Rezaie P, Korr H, Steinbusch HW, Pradier L, Bayer TA (2004) Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 164(4):1495–1502PubMedCentralPubMedCrossRefGoogle Scholar
  79. Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TP, Ecroyd H, Welland ME, Carver JA, Dobson CM, Meehan S (2011) Binding of the molecular chaperone alphaB-crystallin to Abeta amyloid fibrils inhibits fibril elongation. Biophys J 101(7):1681–1689PubMedCentralPubMedCrossRefGoogle Scholar
  80. Shashidharamurthy R, Koteiche HA, Dong J, McHaourab HS (2005) Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem 280(7):5281–5289PubMedCrossRefGoogle Scholar
  81. Shin JH, Kim SW, Lim CM, Jeong JY, Piao CS, Lee JK (2009) AlphaB-crystallin suppresses oxidative stress-induced astrocyte apoptosis by inhibiting caspase-3 activation. Neurosci Res 64(4):355–361PubMedCrossRefGoogle Scholar
  82. Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) AlphaB-crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J Neurol Sci 119(2):203–208PubMedCrossRefGoogle Scholar
  83. Smulders R, Carver JA, Lindner RA, van Boekel MA, Bloemendal H, de Jong WW (1996) Immobilization of the C-terminal extension of bovine alphaA-crystallin reduces chaperone-like activity. J Biol Chem 271(46):29060–29066CrossRefGoogle Scholar
  84. Stefani M (2012) Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits. Prog Neurobiol 99(3):226–245PubMedCrossRefGoogle Scholar
  85. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81(11):678–699PubMedCrossRefGoogle Scholar
  86. Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E, Kay LE, Vierling E, Robinson CV, Benesch JL (2010) Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc Natl Acad Sci U S A 107(5):2007–2012PubMedCentralPubMedCrossRefGoogle Scholar
  87. Stengel F, Baldwin AJ, Bush MF, Hilton GR, Lioe H, Basha E, Jaya N, Vierling E, Benesch JL (2012) Dissecting heterogeneous molecular chaperone complexes using a mass spectrum deconvolution approach. Chem Biol 19(5):599–607PubMedCentralPubMedCrossRefGoogle Scholar
  88. Stranks SD, Ecroyd H, Van Sluyter S, Waters EJ, Carver JA, von Smekal L (2009) Model for amorphous aggregation processes. Phys Rev E 80(5):13CrossRefGoogle Scholar
  89. Treweek TM, Lindner RA, Mariani M, Carver JA (2000) The small heat-shock chaperone protein, alpha-crystallin, does not recognize stable molten globule states of cytosolic proteins. Biochim Biophys Acta 1481(1):175–188PubMedCrossRefGoogle Scholar
  90. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269(1):2–12PubMedCrossRefGoogle Scholar
  91. van de Klundert FA, Smulders RH, Gijsen ML, Lindner RA, Jaenicke R, Carver JA, de Jong WW (1998) The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur J Biochem 258(3):1014–1021PubMedCrossRefGoogle Scholar
  92. van Oijen AM (2011) Single-molecule approaches to characterizing kinetics of biomolecular interactions. Curr Opin Biotechnol 22(1):75–80PubMedCrossRefGoogle Scholar
  93. Vendruscolo M, Knowles TP, Dobson CM (2011) Protein solubility and protein homeostasis: a generic view of protein misfolding disorders. Cold Spring Harb Perspect Biol 3(12):a010454PubMedCentralPubMedCrossRefGoogle Scholar
  94. Voisine C, Pedersen JS, Morimoto RI (2010) Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 40(1):12–20PubMedCentralPubMedCrossRefGoogle Scholar
  95. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539PubMedCrossRefGoogle Scholar
  96. Waudby CA, Knowles TP, Devlin GL, Skepper JN, Ecroyd H, Carver JA, Welland ME, Christodoulou J, Dobson CM, Meehan S (2010) The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J 98(5):843–851PubMedCentralPubMedCrossRefGoogle Scholar
  97. Wilhelmus MM, Otte-Holler I, Wesseling P, de Waal RM, Boelens WC, Verbeek MM (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32(2):119–130PubMedCrossRefGoogle Scholar
  98. Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR (2013) Extracellular chaperones and proteostasis. Annu Rev Biochem 82:295–322PubMedCrossRefGoogle Scholar
  99. Xu F, Yu H, Liu J, Cheng L (2013) AlphaB-crystallin regulates oxidative stress-induced apoptosis in cardiac H9c2 cells via the PI3K/AKT pathway. Mol Biol Rep 40(3):2517–2526PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Illawarra Health and Medical Research Institute and School of Biological SciencesUniversity of WollongongWollongongAustralia

Personalised recommendations