Compressive Sensing in Acoustic Imaging

  • Nancy BertinEmail author
  • Laurent Daudet
  • Valentin Emiya
  • Rémi Gribonval
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Acoustic sensing is at the heart of many applications, ranging from underwater sonar and nondestructive testing to the analysis of noise and their sources, medical imaging, and musical recording. This chapter discusses a palette of acoustic imaging scenarios where sparse regularization can be leveraged to design compressive acoustic imaging techniques. Nearfield acoustic holography (NAH) serves as a guideline to describe the general approach. By coupling the physics of vibrations and that of wave propagation in the air, NAH can be expressed as an inverse problem with a sparsity prior and addressed through sparse regularization. In turn, this can be coupled with ideas from compressive sensing to design semi-random microphone antennas, leading to improved hardware simplicity, but also to new challenges in terms of sensitivity to a precise calibration of the hardware and software scalability. Beyond NAH, this chapter shows how compressive sensing is being applied to other acoustic scenarios such as active sonar, sampling of the plenacoustic function, medical ultrasound imaging, localization of directive sources, and interpolation of plate vibration response.


Impulse Response Acoustic Field Tikhonov Regularization Acoustic Imaging Sparse Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to warmly thank François Ollivier, Jacques Marchal, and Srdjan Kitic for the figures, as well as Gilles Chardon, Rmi Mignot, Antoine Peillot, and the colleagues from the ECHANGE and PLEASE project whose contributions have been essential in the work described in this chapter. This work was supported in part by French National Research, ECHANGE project (ANR-08-EMER-006 ECHANGE) and by the European Research Council, PLEASE project (ERC-StG-2011-277906).


  1. 1.
    Ajdler, T., Vetterli, M.: Acoustic based rendering by interpolation of the plenacoustic function. In: SPIE/IS &T Visual Communications and Image Processing Conference, pp. 1337–1346. EPFL (2003)Google Scholar
  2. 2.
    Benichoux, A., Vincent, E., Gribonval, R.: A compressed sensing approach to the simultaneous recording of multiple room impulse responses. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 2011, p. 1, New Paltz, NY, USA (2011)Google Scholar
  3. 3.
    Bilen, C., Puy, G., Gribonval, R., Daudet, L.: Blind Phase Calibration in Sparse Recovery. In:EUSIPCO - 21st European Signal Processing Conference-2013, IEEE, Marrakech, Maroc (2013)Google Scholar
  4. 4.
    Bilen, C., Puy G., Gribonval, R., Daudet, L.: Blind Sensor Calibration in Sparse Recovery Using Convex Optimization. In: SAMPTA - 10th International Conference on Sampling Theory and Applications - 2013, Bremen, Germany (2013)Google Scholar
  5. 5.
    Bilen, C., Puy, G., Gribonval, R., Daudet, L.: Convex optimization approaches for blind sensor calibration using sparsity. IEEE Trans. Signal Process. 99(1), (2014)Google Scholar
  6. 6.
    Boufounos, P.: Compressive sensing for over-the-air ultrasound. In: Proceedings of ICASSP, pp. 5972–5975, Prague, Czech Republic, (2011)Google Scholar
  7. 7.
     Chardon, G,  Leblanc, A,  Daudet L.: Plate impulse response spatial interpolation with sub-nyquist sampling. J. Sound Vib. 330(23), 5678–5689 (2011)CrossRefGoogle Scholar
  8. 8.
    Chardon, G., Bertin, N., Daudet, L.: Multiplexage spatial aléatoire pour l’échantillonnage compressif - application à l’holographie acoustique. In: XXIIIe Colloque GRETSI, Bordeaux, France (2011)Google Scholar
  9. 9.
    Chardon, G., Daudet, L., Peillot, A., Ollivier, F., Bertin, N., Gribonval, R.: Nearfield acoustic holography using sparsity and compressive sampling principles. J. Acoust. Soc. Am. 132(3), 1521–1534 (2012) Code & data for reproducing the main figures of this paper are available at
  10. 10.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic Decomposition by Basis Pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Daudet, L.: Sparse and structured decompositions of signals with the molecular matching pursuit. IEEE Trans Audio Speech Lang. Process. 14(5), 1808–1816 (2006)CrossRefGoogle Scholar
  12. 12.
    Duarte, M.F.,  Sarvotham, S.,  Baron, D., Wakin, M.B., Baraniuk, R.G.: Distributed compressed sensing of jointly sparse signals. In: Proceedings of Asilomar Conference Signals, Systems and Computers, pp. 1537–1541 (2005)Google Scholar
  13. 13.
    Ekanadham, C., Tranchina, D., Simoncelli, E.P.: Recovery of sparse translation-invariant signals with continuous basis pursuit. IEEE Trans. Signal Process. 59(10), 4735–4744 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Prob. 23, 947–968 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Giryes, R.,  Nam, S., Elad, M.,  Gribonval, R., Davies, M.E.: Greedy-Like algorithms for the cosparse analysis model. arXiv preprint arXiv:1207.2456 (2013)Google Scholar
  16. 16.
    Gribonval, R., Bacry, E.: Harmonic decomposition of audio signals with matching pursuit. IEEE Trans. Signal Process. 51(1), 101–111 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gribonval, R., Chardon, G., Daudet, L.: Blind Calibration For Compressed Sensing By Convex Optimization. In:IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, Kyoto, Japan (2012)Google Scholar
  18. 18.
    Kitić, S., Bertin, N.,  Gribonval, R.: A review of cosparse signal recovery methods applied to sound source localization. In:Le XXIVe colloque Gretsi, Brest, France (2013)Google Scholar
  19. 19.
    Kitic, S., Bertin, N.,  Gribonval, R.: Hearing behind walls: localizing sources in the room next door with cosparsity. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy (2014)Google Scholar
  20. 20.
    Liebgott, H., Basarab, A., Kouamé, D.,  Bernard, O., Friboulet, D.: Compressive Sensing in Medical Ultrasound. pp. 1–6. IEEE, Dresden (Germany)(2012)Google Scholar
  21. 21.
    Liebgott, H., Prost R.,  Friboulet, D.: Pre-beamformed RF signal reconstruction in medical ultrasound using compressive sensing. Ultrasonics 53(2), 525–533 (2013)CrossRefGoogle Scholar
  22. 22.
    Maynard, J.D., Williams, E.G., Lee, Y.: Nearfield acoustic holography: I, theory of generalized holography and the development of NAH. J. Acoust. Soc. Am. 78(4), 1395–1413 (1985)CrossRefGoogle Scholar
  23. 23.
    Mignot, R.,  Chardon, G.,  Daudet, L.: Low frequency interpolation of room impulse responses using compressed sensing. IEEE/ACM Trans. Audio Speech Lang. Process. 22(1), 205–216 (2014)CrossRefGoogle Scholar
  24. 24.
    Mignot, R.. Daudet, L., F. Ollivier. Room reverberation reconstruction: Interpolation of the early part using compressed sensing. IEEE Trans. Audio, Speech, Lang. Process. 21(11), 2301–2312 (2013)Google Scholar
  25. 25.
    Moiola, A., Hiptmair, R., Perugia, I.: Plane wave approximation of homogeneous helmholtz solutions. Z. Angew. Math. Phys. (ZAMP) 62, 809–837 (2011). 10.1007/s00033-011-0147-yGoogle Scholar
  26. 26.
    Nam, S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal. 34(1), 30–56 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Nam, S., Davies, M.E.,  Elad, M.,  Gribonval, R.: Recovery of cosparse signals with greedy analysis pursuit in the presence of noise. In: 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 361–364. IEEE, New York (2011)Google Scholar
  28. 28.
     Nam, S.,  Gribonval, R.: Physics-driven structured cosparse modeling for source localization. In:2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5397–5400. IEEE, New York (2012)Google Scholar
  29. 29.
    Quinsac, C., Basarab, A.,  Kouam, D.: Frequency domain compressive sampling for ultrasound imaging. Adv. Acoust. Vib. Adv. Acoust. Sens. Imag. Signal Process. 12 1–16 (2012)Google Scholar
  30. 30.
    Rauhut, H.: Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal. 22(1), 16–42 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
     Richy, J.,  Liebgott, H.,  Prost, R.,  Friboulet, D.: Blood velocity estimation using compressed sensing. In:IEEE International Ultrasonics Symposium, pp. 1427–1430. Orlando (2011)Google Scholar
  32. 32.
    Schiffner, M.F., Schmitz, G.: Fast pulse-echo ultrasound imaging employing compressive sensing. In:Ultrasonics Symposium (IUS), 2011 IEEE International, pp 688–691. IEEE, New York (2011)Google Scholar
  33. 33.
    Stefanakis, N., Marchal, J.,  Emiya, V.,  Bertin, N.,  Gribonval, R.,  Cervenka, P.: Sparse underwater acoustic imaging: a case study. In: Proceeding of International Conference Acoustics, Speech, and Signal Processing. Kyoto, Japan (2012)Google Scholar
  34. 34.
    Wabnitz, A., Epain, N., van Schaik, A., Jin, C.: Time domain reconstruction of spatial sound fields using compressed sensing. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 465–468. IEEE, New York (2011)Google Scholar
  35. 35.
    Wagner, N., Eldar, Y.C., Feuer, A., Danin, G., Friedman, Z.: Xampling in ultrasound imaging. SPIE Medical Imaging Conference, 7968 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nancy Bertin
    • 1
    Email author
  • Laurent Daudet
    • 2
  • Valentin Emiya
    • 3
  • Rémi Gribonval
    • 4
  1. 1.IRISA - CNRS UMR 6074, PANAMA team (Inria & CNRS)Rennes CedexFrance
  2. 2.Paris Diderot University, Institut Langevin, ESPCI ParisTech, CNRS UMR 7587ParisFrance
  3. 3.Aix-Marseille Université, CNRS, LIF UMR 7279Marseille Cedex 9France
  4. 4.Inria, PANAMA team (Inria & CNRS)Rennes CedexFrance

Personalised recommendations