Advertisement

Compressed Sensing, Sparse Inversion, and Model Mismatch

  • Ali PezeshkiEmail author
  • Yuejie Chi
  • Louis L. Scharf
  • Edwin K. P. Chong
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

The advent of compressed sensing theory has revolutionized our view of imaging, as it demonstrates that subsampling has manageable consequences for image inversion, provided that the image is sparse in an apriori known dictionary. For imaging problems in spectrum analysis (estimating complex exponential modes), and passive and active radar/sonar (estimating Doppler and angle of arrival), this dictionary is usually taken to be a DFT basis (or frame) constructed for resolution of 2πn, with n a window length, array length, or pulse-to-pulse processing length. However, in reality no physical field is sparse in a DFT frame or in any apriori known frame. No matter how finely we grid the parameter space (e.g., frequency, delay, Doppler, and/or wavenumber) the sources may not lie in the center of the grid cells and consequently there is always mismatch between the assumed and the actual frames for sparsity. But what is the sensitivity of compressed sensing to mismatch between the physical model that generated the data and the mathematical model that is assumed in the sparse inversion algorithm? In this chapter, we study this question. The focus is on the canonical problem of DFT inversion for modal analysis.

Keywords

Compress Sensing Linear Prediction Orthogonal Match Pursuit Basis Pursuit Basis Mismatch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baraniuk, R., Steeghs, P.: Compressive radar imaging. In: Proc. 2007 IEEE radar conf., pp. 128–133. Waltham, Massachusetts (2007)Google Scholar
  2. 2.
    Candes, E., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. preprint (Mar. 2012, arxiv:1203.5871.)Google Scholar
  3. 3.
    Candés, E.J.: The restricted isometry property and its implications for compressed sensing. Académie des Sciences 1(346), 589–592 (2008)Google Scholar
  4. 4.
    Candés, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Candés, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51, 4203–4215 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cevher, V., Gurbuz, A., McClellan, J., Chellappa, R.: Compressive wireless arrays for bearing estimation of sparse sources in angle domain. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2497–2500. Las Vegas, Nevada (2008)Google Scholar
  7. 7.
    Chandrasekaran, V., Recht, B., Parrilo, P.A., Willsky, A.S.: The convex geometry of linear inverse problems. Found. Comput. Math. 12(6), 805–849 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, Y., Chi, Y.: Spectral compressed sensing via structured matrix completion. In: Proc. International Conference on Machine Learning (ICML) (2013)Google Scholar
  9. 9.
    Chen, Y., Chi, Y.: Robust spectral compressed sensing via structured matrix completion. preprint (2013, arXiv:1304.8126.)Google Scholar
  10. 10.
    Chi, Y., Chen, Y.: Compressive recovery of 2-D off-grid frequencies. In: Conf. rec. asilomar conf. signals, systems, and computers (2013)CrossRefGoogle Scholar
  11. 11.
    Chi, Y., Scharf, L.L., Pezeshki, A., Calderbank, R.: Sensitivity to basis mismatch in compressed sensing. IEEE Trans. Signal Process. 59(5), 2182–2195 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Duarte, M.F., Baraniuk, R.G.: Spectral compressive sensing. Appl. Comput. Harmon. Anal. 35(1), 111–129 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fannjiang, A., Yan, P., Strohmer, T.: Compressed remote sensing of sparse objects. SIAM J. Imag. Sci. 3(3), 595–618 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins Univ. Press, Baltimore, MD (1996)zbMATHGoogle Scholar
  15. 15.
    Gurbuz, A., McClellan, J., Cevher, V.: A compressive beamforming method. In: Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 2617–2620. Las Vegas, NV (2008)Google Scholar
  16. 16.
    Herman, M.A., Needell, D.: Mixed operators in compressed sensing. In: Proc. 44th Annual Conference on Information Sciences and Systems (CISS). Princeton, NJ (2010)Google Scholar
  17. 17.
    Herman, M.A., Strohmer, T.: High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Herman, M.A., Strohmer, T.: General deviants: an analysis of perturbations in compressed sensing. IEEE J. Sel. Top. Sign. Proces.: Special Issue on Compressive Sens. 4(2), 342–349 (2010)Google Scholar
  19. 19.
    Hua, Y.: Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans. Signal Process. 40(9), 2267–2280 (1992)CrossRefzbMATHGoogle Scholar
  20. 20.
    Karim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)CrossRefGoogle Scholar
  21. 21.
    Klemm, R.: Space-Time Adaptive Processing. IEEE Press, UK (1998)Google Scholar
  22. 22.
    McWhorter, L.T., Scharf, L.L.: Cramer-Rao bounds for deterministic modal analysis. IEEE Trans. Signal Process. 41(5), 1847–1862 (1993)CrossRefzbMATHGoogle Scholar
  23. 23.
    Mullis, C.T., Scharf, L.L.: Quadratic estimators of the power spectrum. In: Haykin, S. (ed.) Advances in Spectrum Estimation, vol. 1, chap. 1, pp. 1–57. Prentice Hall, Englewood Cliffs, NJ (1990)Google Scholar
  24. 24.
    Needell, D., Tropp, J.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301–321 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9, 317–334 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Needell, D., Vershynin, R.: Signal recovery from inaccurate and incomplete measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Sign. Proces. 4(2), 310–316 (2010)CrossRefGoogle Scholar
  27. 27.
    Pezeshki, A., Veen, B.D.V., Scharf, L.L., Cox, H., Lundberg, M.: Eigenvalue beamforming using a generalized sidelobe canceller and subset selection. IEEE Trans. Signal Process. 56(5), 1954–1967 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Scharf, L.L.: Statistical Signal Processing. Addison-Wesley, MA (1991)zbMATHGoogle Scholar
  29. 29.
    Scharf, L.L., Chong, E.K.P., Pezeshki, A., Luo, J.: Sensitivity considerations in compressed sensing. In: Conf. Rec. Forty-fifth Asilomar Conf. Signals, Syst. Pacific Grove, CA (2011)CrossRefGoogle Scholar
  30. 30.
    Scharf, L.L., Friedlander, B.: Matched subspace detectors. IEEE Trans. Signal Process. 42(8), 2146–2157 (1994)CrossRefzbMATHGoogle Scholar
  31. 31.
    Tang, G., Bhaskar, B.N., Shah, P., Recht, B.: Compressed sensing off the grid. preprint (Jul. 2012, arxiv:1207.6053.)Google Scholar
  32. 32.
    Trees, H.L.V., Bell, K.L.: Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking. IEEE Press, New York (2007)CrossRefzbMATHGoogle Scholar
  33. 33.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12) (1992)Google Scholar
  34. 34.
    Tufts, D.W., Kumaresan, R.: Estimation of frequencies of multiple sinusoids: making linear prediction perform like maximum likelihood. Proc. IEEE. 70, 975–989 (1982)CrossRefGoogle Scholar
  35. 35.
    Tufts, D.W., Kumaresan, R.: Singular value decomposition and improved frequency estimation using linear prediction. IEEE Trans. Acoust. Speech Signal Process. 30(4), 671–675 (1982)CrossRefGoogle Scholar
  36. 36.
    Van Trees, H.L.: Optimum Array Processing. Wiley Interscience, New York (2002)CrossRefGoogle Scholar
  37. 37.
    Ward, J.: Maximum likelihood angle and velocity estimation with space-time adaptive processing radar. In: Conf. Rec. 1996 Asilomar Conf. Signals, Systs., Comput., pp. 1265–1267. Pacific Grove, CA (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ali Pezeshki
    • 1
    Email author
  • Yuejie Chi
    • 2
  • Louis L. Scharf
    • 3
  • Edwin K. P. Chong
    • 1
  1. 1.Department of Electrical and Computer Engineering, and Department of MathematicsColorado State UniversityFort CollinsUSA
  2. 2.Department of Electrical and Computer Engineering, and Department of Biomedical InformaticsThe Ohio State UniversityColumbusUSA
  3. 3.Department of MathematicsColorado State UniversityFort CollinsUSA

Personalised recommendations