Advertisement

Reconstructing the Carbon Dioxide Absorption Patterns of World Oceans Using a Feed-Forward Neural Network: Software Implementation and Employment Techniques

  • Jiye Zeng
  • Hideaki Nakajima
  • Yukihiro Nojiri
  • Shin-ichiro Nakaoka
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 448)

Abstract

Oceans play a major role in the global carbon budget, absorbing approximately 27% of anthropogenic carbon dioxide (CO2). As the degree to which an ocean can serve as a carbon sink is determined by the partial pressure of CO2 in the surface water, it is critical to obtain an accurate estimate of the spatial distributions of CO2 and its temporal variation on a global scale. However, this is extremely challenging due to insufficient measurements, large seasonal variability, and short spatial de-correlation scales. This paper presents an open source software package that implements a feed-forward neural network and a back-propagation training algorithm to solve a problem with one output variable and a large number of training patterns. We discuss the employment of the neural network for global ocean CO2 mapping.

Keywords

CO2 climate neural network ocean software 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., Thornton, P.: Carbon and Other Biogeochemical Cycles. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (2013)Google Scholar
  2. 2.
    Quéré, C., Le, G.P., Peters, R.J., Andres, R.M., Andrew, T.A., Boden, P., Ciais, P., Friedlingstein, R.A., Houghton, G., Marland, R., Moriarty, S., Sitch, P., Tans, A., Arneth, A., Arvanitis, D.C.E., Bakker, L., Bopp, J.G., Canadell, L.P., Chini, S.C., Doney, A., Harper, I., Harris, J.I., House, A.K., Jain, S.D., Jones, E., Kato, R.F., Keeling, K., Klein Goldewijk, A., Körtzinger, C., Koven, N., Lefèvre, F., Maignan, A., Omar, T., Ono, G.-H., Park, B., Pfeil, B., Poulter, M.R., Raupach, P., Regnier, C., Rödenbeck, S., Saito, J., Schwinger, J., Segschneider, B.D., Stocker, T., Takahashi, B., Tilbrook, S., van Heuven, N., Viovy, R., Wanninkhof, A.: Global Carbon Budget 2013. Earth System Science Data 6, 235–263, doi:10.5194/essd-6-235-2014Google Scholar
  3. 3.
    Wanninkhof, R.: Relationship between Wind-Speed and Gas-Exchange over the Ocean. J. Geophys. Res.-Oceans 97, 7373–7382 (1992)CrossRefGoogle Scholar
  4. 4.
    Bakker, D.C.E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S.R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O’Brien, K.M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N.R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R.D., Chavez, F.P., Chen, L., Chierici, M., Currie, K., de Baar, H.J.W., Evans, W., Feely, R.A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N.J., Hoppema, M., Huang, W.-J., Hunt, C.W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E.M., Jones, S.D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Manke, A.B., Mathis, J.T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A.M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A.F., Sabine, C.L., Saito, S., Salisbury, J., Sarma, V.V.S.S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K.F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S.M.A.C., Vandemark, D., Vlahos, P., Wallace, D.W.R., Wanninkhof, R., Watson, A.J.: An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth System Science Data Discussions 6, 465–512 (2013), doi:10.5194/essdd-6-465-2013.CrossRefGoogle Scholar
  5. 5.
    Zeng, J.Y., Nojiri, Y., Murphy, P.P., Wong, C.S., Fujinuma, Y.: A comparison of Delta pCO2 distributions in the northern North Pacific using results from a commercial vessel in 1995-1999. Deep-Sea Res. Part II-Top. Stud. Oceanogr 49, 5303–5315 (2002)CrossRefGoogle Scholar
  6. 6.
    Lefevre, N., Watson, A.J., Watson, A.R.: A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data. Tellus Ser. B-Chem. Phys. Meteorol. 57, 375–384 (2005)CrossRefGoogle Scholar
  7. 7.
    Chierici, M., Fransson, A., Nojiri, Y.: Biogeochemical processes as drivers of surface fCO(2) in contrasting provinces in the subarctic North Pacific Ocean. Glob. Biogeochem. Cycle 20 (2006)Google Scholar
  8. 8.
    Sarma, V.V.S.S., Saino, T., Sasaoka, K., Nojiri, Y., Ono, T., Ishii, M., Inoue, H.Y., Matsumoto, K.: Basin-scale pCO2 distribution using satellite sea surface temperature, Chla, and climatological salinity in the North Pacific in spring and summer. Glob. Biogeochem. Cycle 20 (2006)Google Scholar
  9. 9.
    Jamet, C., Moulin, C., Lefevre, N.: Estimation of the oceanic pCO2 in the North Atlantic from VOS lines in-situ measurements: parameters needed to generate seasonally mean maps. Ann. Geophys. 25, 2247–2257 (2007)CrossRefGoogle Scholar
  10. 10.
    Friedrich, T., Oschlies, A.: Neural network-based estimates of North Atlantic surface pCO(2) from satellite data: A methodological study. J. Geophys. Res.-Oceans 114 (2009)Google Scholar
  11. 11.
    Telszewski, M., et al.: Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network. Biogeosciences 6, 1405–1421 (2009)CrossRefGoogle Scholar
  12. 12.
    Takamura, T.R., Inoue, H.Y., Midorikawa, T., Ishii, M., Nojiri, Y.: Seasonal and Inter-Annual Variations in pCO2sea and Air-Sea CO2 Fluxes in Mid-Latitudes of the Western and Eastern North Pacific during 1999-2006: Recent Results Utilizing Voluntary Observation Ships. Journal of the Meteorological Society of Japan 88, 883–898 (2010)CrossRefGoogle Scholar
  13. 13.
    Landschützer, P., Gruber, N., Bakker, D.C.E., Schuster, U., Nakaoka, S., Payne, M.R., Sasse, T., Zeng, J.: A Neural Network-based Estimate of the Seasonal to Inter-annual Variability of the Atlantic Ocean Carbon Sink. Biogeosciences Discuss 10, 8799–8849 (2013)CrossRefGoogle Scholar
  14. 14.
    Nakaoka, S., Telszewski, M., Nojiri, Y., Yasunaka, S., Miyazaki, C., Mukai, H., Usui, N.: Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a Self Organizing Map neural network technique. Biogeosciences 10, 6093–6106 (2013)CrossRefGoogle Scholar
  15. 15.
    Li, Z., Adamec, D., Takahashi, T., Sutherland, S.C.: Global aurocorrelation scales of the partial pressure of oceanic CO2. J Geophys. Res. 110, C08002 (2005), doi:10.1029/2004JC002723.Google Scholar
  16. 16.
    Wanninkhof, R., Park, G.H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S.C., McKinley, G.A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H., Khatiwala, S.: Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10, 1983–2000 (2013)CrossRefGoogle Scholar
  17. 17.
    Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D.C.E., Schuster, U., Metzl, N., Inoue, H.Y., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T.S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C.S., Delille, B., Bates, N.R., de Baar, H.J.W.: Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans (vol 56, pg 554, 2009). Deep-Sea Res. Part I-Oceanogr. Res. Pap. 56, 2075–2076 (2009)CrossRefGoogle Scholar
  18. 18.
    Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M., Nakaoka, S.: A Global Surface Ocean fCO2 Climatology Based on a Feed-Forward Neural Network. Journalof Atmospheric and Oceanic Technology 31, 1838–1849 (2014)CrossRefGoogle Scholar
  19. 19.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Representations by Back-Propagating Errors. Nature 323, 533–536 (1986)CrossRefGoogle Scholar
  20. 20.
    LeCun, Y., Bottou, L., Orr, G.B., Muller, K.R.: Efficient backprop. Neural Networks: Tricks of the Trade 1524, 9–50 (1998)Google Scholar
  21. 21.
    Wilamowski, B.M., Yu, H.: Improved Computation for Levenberg-Marquardt Training. IEEE Transactions on Neural Networks 21, 930–937 (2010)CrossRefGoogle Scholar
  22. 22.
    Blum, E.K., Li, L.K.: Approximation-Theory and Feedforward Networks. Neural Networks 4, 511–515 (1991)CrossRefGoogle Scholar
  23. 23.
    Hornik, K.: Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks 4, 251–257 (1991)CrossRefGoogle Scholar
  24. 24.
    Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems 39, 43–62 (1997)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Jiye Zeng
    • 1
  • Hideaki Nakajima
    • 1
  • Yukihiro Nojiri
    • 1
  • Shin-ichiro Nakaoka
    • 1
  1. 1.National Institute for Environmental StudiesTsukubaJapan

Personalised recommendations