Modelling environmental semantics is a prerequisite for model and data interoperabilty and reuse, both essential for integrated modelling. This paper previews a landscape where integrated modelling activities are performed in a virtual environmental information space, and identifies challenges imposed by the nature of integrated modelling tasks and new technology drivers such as sensor networks, big data and high-performance computing. A set of requirements towards a universal framework for sharing environmental data and models is presented. The approach is demonstrated in the case study of a semantic modelling system for wildlife monitoring, management and conservation.


Environmental semantics Intergrated modelling Environmental Information Space Service orientation Internet of the Things 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rizzoli, A.E., Athanasiadis, I.N., Villa, F.: Delivering environmental knowledge: a semantic approach. In: Proc. 21st International Conference on Informatics for Environmental Protection (EnviroInfo 2007), pp. 43–50. Shaker Verlag, Warsaw (2007)Google Scholar
  2. 2.
    UN Earth Summit: Agenda 21. Department of public information, United Nations, Rio de Janeiro, Brazil (1992)Google Scholar
  3. 3.
    Athanasiadis, I.N., Villa, F.: A roadmap to domain specific programming languages for environmental modeling: key requirements and concepts. In: Proc. 2013 ACM workshop on Domain-Specific Modeling, pp. 27–32. ACM (2013)Google Scholar
  4. 4.
    Rizzoli, A., Young, W.: Delivering environmental decision support systems: Software tools and techniques. Environmental Modelling & Software 12, 237–249 (1997)CrossRefGoogle Scholar
  5. 5.
    Denzer, R.: Generic integration of environmental decision support systems - state-of-the-art. Environmental Modelling & Software 20, 1217–1223 (2005)CrossRefGoogle Scholar
  6. 6.
    Athanasiadis, I.N.: Towards a virtual enterprise architecture for the environmental sector. In: Protogeros, N. (ed.) Agent and web service technologies in virtual enterprises, pp. 256–266. Information Science Reference, Hershey (2007)Google Scholar
  7. 7.
    Villa, F., Athanasiadis, I.N., Rizzoli, A.E.: Modelling with knowledge: a review of emerging semantic approaches to environmental modelling. Environmental Modelling and Software 24, 577–587 (2009)CrossRefGoogle Scholar
  8. 8.
    Villa, F., et al.: Thinklab software repository (2013)Google Scholar
  9. 9.
    Villa, F., Bagstad, K.J., Voigt, B., Johnson, G.W., Portela, R., Honzak, M., Batker, D.: A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 9, e91001 (2014)Google Scholar
  10. 10.
    Athanasiadis, I.N., Villa, F., Examiliotou, G., Iliopoulos, Y., Mertzanis, Y.: Towards a semantic framework for wildlife modeling. In: Marx Gomez, J., et al. (eds.) Proc. 28th International Conference on Informatics for Environmental Protection (Enviroinfo 2014), pp. 287–292. BIS-Verlag, Oldenburg (2014)Google Scholar
  11. 11.
    OGC: Sensor Observation Service, Open Geospatial Consortium Standard (2007)Google Scholar
  12. 12.
    OGC: Web Coverage Service, Open Geospatial Consortium Standard (2012)Google Scholar
  13. 13.
    Pollino, C.A., Woodberry, O., Nicholson, A., Korb, K., Hart, B.T.: Parameterisation and evaluation of a bayesian network for use in an ecological risk assessment. Environmental Modelling & Software 22, 1140–1152 (2007)CrossRefGoogle Scholar
  14. 14.
    Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N.: Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83, 2027–2036 (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Ioannis N. Athanasiadis
    • 1
  1. 1.Democritus University of ThraceXanthiGreece

Personalised recommendations