Provenance in Systems for Situation Awareness in Environmental Monitoring

  • Markus Stocker
  • Mauno Rönkkö
  • Mikko Kolehmainen
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 448)

Abstract

As environmental monitoring systems increasingly automate the collection and processing of environmental sensor network data, the technical components of such systems can automatically obtain and maintain higher levels of situation awareness—awareness of the monitored part of reality. In order to increase confidence in the correctness of situation awareness maintained by such systems it is important to explicitly model provenance. We present an alignment of the PROV ontology with ontologies used in a software framework for situation awareness in environmental monitoring, called Wavellite. The extended vocabulary enables the explicit representation of provenance in Wavellite applications. We demonstrate the implementation for a concrete scenario.

Keywords

Situation awareness situation theory provenance environmental monitoring Wavellite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human Factors: The Journal of the Human Factors and Ergonomics Society 37(1), 32–64 (1995)CrossRefGoogle Scholar
  2. 2.
    Salmon, P.M., Stanton, N.A., Jenkins, D.P., Walker, G.H., Young, M.S., Aujla, A.: What Really Is Going on? Review, Critique and Extension of Situation Awareness Theory. In: Harris, D. (ed.) HCII 2007 and EPCE 2007. LNCS (LNAI), vol. 4562, pp. 407–416. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-73331-7_45 CrossRefGoogle Scholar
  3. 3.
    Smith, K., Hancock, P.: Situation Awareness Is Adaptive, Externally Directed Consciousness. Human Factors: The Journal of the Human Factors and Ergonomics Society 37(1), 137–148 (1995)CrossRefGoogle Scholar
  4. 4.
    Bedny, G., Meister, D.: Theory of Activity and Situation Awareness. International Journal of Cognitive Ergonomics 3(1), 63–72 (1999), http://dx.doi.org/10.1207/s15327566ijce0301_5 CrossRefGoogle Scholar
  5. 5.
    Stanton, N.A., Stewart, R., Harris, D., Houghton, R.J., Baber, C., McMaster, R., Salmon, P., Hoyle, G., Walker, G., Young, M.S., Linsell, M., Dymott, R., Green, D.: Distributed situation awareness in dynamic systems: theoretical development and application of an ergonomics methodology. Ergonomics 49(12-13), 1288–1311 (2006), http://dx.doi.org/10.1080/00140130600612762, pMID: 17008257
  6. 6.
    Stanton, N.A., Salmon, P.M., Walker, G.H., Jenkins, D.P.: Is situation awareness all in the mind? Theoretical Issues in Ergonomics Science 11(1-2), 29–40 (2010), http://dx.doi.org/10.1080/14639220903009938 CrossRefGoogle Scholar
  7. 7.
    Endsley, M.R.: Automation and Situation Awareness. In: Parasuraman, R., Mouloua, M. (eds.) Automation and human performance: Theory and applications, pp. 163–181. Lawrence Erlbaum Associates, Inc., Mahwah (1996)Google Scholar
  8. 8.
    Salfinger, A., Retschitzegger, W., Schwinger, W.: Maintaining Situation Awareness Over Time – A Survey on the Evolution Support of Situation Awareness Systems. In: Conference on Technologies and Applications of Artificial Intelligence (TAAI 2013), pp. 274–281. IEEE Computer Society (2013)Google Scholar
  9. 9.
    Stocker, M., Baranizadeh, E., Portin, H., Komppula, M., Rönkkö, M., Hamed, A., Virtanen, A., Lehtinen, K., Laaksonen, A., Kolehmainen, M.: Representing situational knowledge acquired from sensor data for atmospheric phenomena. Environmental Modelling & Software 58(0), 27–47 (2014), http://www.sciencedirect.com/science/article/pii/S1364815214001108 CrossRefGoogle Scholar
  10. 10.
    Stocker, M., Rönkkö, M., Kolehmainen, M.: Situational knowledge representation for traffic observed by a pavement vibration sensor network. IEEE Transactions on Intelligent Transportation Systems 15(4), 1441–1450 (2014)CrossRefGoogle Scholar
  11. 11.
    Stocker, M., Nikander, J., Huitu, H., Jalli, M., Rönkkö, M., Kolehmainen, M.: Disease pressure situation modelling in agriculture. Computers and Electronics in Agriculture (Submitted, 2014)Google Scholar
  12. 12.
    Barwise, J., Perry, J.: Situations and Attitudes. The Journal of Philosophy 78(11), 668–691 (1981), http://www.jstor.org/stable/2026578 CrossRefGoogle Scholar
  13. 13.
    Devlin, K.: Logic and Information. Cambridge University Press (1991)Google Scholar
  14. 14.
    Kokar, M.M., Matheus, C.J., Baclawski, K.: Ontology-based situation awareness. Inf. Fusion 10(1), 83–98 (2009)CrossRefGoogle Scholar
  15. 15.
    Hart, J.K., Martinez, K.: Environmental Sensor Networks: A revolution in the earth system science? Earth-Science Reviews 78(3-4), 177–191 (2006)CrossRefGoogle Scholar
  16. 16.
    Finkelstein, L.: Theory and Philosophy of Measurement. In: Sydenham, P.H. (ed.) Handbook of Measurement Science. Theoretical Fundamentals, vol. 1, pp. 1–30. John Wiley & Sons (1982)Google Scholar
  17. 17.
    Walker, G.H., Stanton, N.A., Salmon, P.M., Jenkins, D.P.: A review of sociotechnical systems theory: a classic concept for new command and control paradigms. Theoretical Issues in Ergonomics Science 9(6), 479–499 (2008), http://dx.doi.org/10.1080/14639220701635470 CrossRefGoogle Scholar
  18. 18.
    Stocker, M., Rönkkö, M., Kolehmainen, M.: Towards an Ontology for Situation Assessment in Environmental Monitoring. In: Ames, D.P., Quinn, N.W., Rizzoli, A.E. (eds.) Proceedings of the 7th International Congress on Environmental Modelling and Software, vol. 3, pp. 1281–1288. International Environmental Modelling & Software Society, San Diego (2014), http://www.iemss.org/society/index.php/iemss-2014-proceedings Google Scholar
  19. 19.
    Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV Ontology. W3C Recommendation, W3C (April 2013), http://www.w3.org/TR/prov-o/
  20. 20.
    Stocker, M., Rönkkö, M., Kolehmainen, M.: A software framework for situation awareness in environmental monitoring. Knowledge-Based Systems (Submitted, 2014)Google Scholar
  21. 21.
    Compton, M., Barnaghi, P., Bermudez, L., GarcÃ-a-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semantics: Science, Services and Agents on the World Wide Web 17(0), 25–32 (2012)CrossRefGoogle Scholar
  22. 22.
    Cyganiak, R., Reynolds, D., Tennison, J.: The RDF Data Cube Vocabulary. Recommendation, W3C (January 2014), http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/Google Scholar
  23. 23.
    Hobbs, J.R., Pan, F.: Time Ontology in OWL. Working draft, W3C (September 2006), http://www.w3.org/TR/owl-time/
  24. 24.
    Perry, M., Herring, J.: OGCGeoSPARQL - A Geographic Query Language for RDF Data. Tech. Rep. OGC 11-052r4, Open Geospatial Consortium (September 2012)Google Scholar
  25. 25.
    Gil, Y., Miles, S.: PROV Model Primer. W3C Working Group Note, W3C (April 2013), http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
  26. 26.
    Compton, M., Corsar, D., Taylor, K.: Sensor Data Provenance: SSNO and PROV-O Together At Last. In: Proceedings of the 7th International Workshop on Semantic Sensor Networks 2014 (SSN2014), 13th International Semantic Web Conference, Riva del Garda, Trentino Italy (October 2014)Google Scholar
  27. 27.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Oltramari, R., Schneider, L., Istc-cnr, L.P., Horrocks, I.: WonderWeb Deliverable D17. The WonderWeb Library of Foundational Ontologies and the DOLCE ontology (2002)Google Scholar
  28. 28.
    Geographic information – Observations and measurements (2011), http://www.iso.org/iso/catalogue_detail.htm?csnumber=32574
  29. 29.
    Stocker, M., Kauhanen, O., Hiirsalmi, M., Saarela, J., Rossi, P., Rönkkö, M., Hytönen, H., Kotovirta, V., Kolehmainen, M.: A software system for the discovery of situations involving drivers in storms. In: Denzer, R., Argent, R., Schimak, G., Hřebíček, J. (eds.) ISESS 2015. IFIP AICT, vol. 448, pp. 229–237. Springer, Heidelberg (2015)Google Scholar
  30. 30.
    Stocker, M., Rönkkö, M., Kolehmainen, M.: Making Sense of Sensor Data Using Ontology: A Discussion for Road Vehicle Classification. In: Seppelt, R., Voinov, A., Lange, S., Bankamp, D. (eds.) 2012 International Congress on Environmental Modelling and Software, pp. 2387–2394. iEMSs, Leipzig (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Markus Stocker
    • 1
  • Mauno Rönkkö
    • 1
  • Mikko Kolehmainen
    • 1
  1. 1.Department of Environmental ScienceUniversity of Eastern FinlandKuopioFinland

Personalised recommendations