Advertisement

Joining the Dots: Using Linked Data to Navigate between Features and Observational Data

  • Robert A. Atkinson
  • Peter Taylor
  • Geoffrey Squire
  • Nicholas J. Car
  • Darren Smith
  • Mark Menzel
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 448)

Abstract

Information about localized phenomena may be represented in multiple ways. GIS systems may be used to record the spatial extent of the phenomena. Observations about the state of one or more properties of the phenomena are available from real-time sensors, models, or from archives. The relationships between these data sources, or specific features in different data products, cannot easily be specified. Additionally, features change over time, their representations use different spatial scales and different aspects of them are of concern to different stakeholders. This greatly increases the number of potential relationships between features. Thus, for a given feature we can expect that heterogeneous information systems will exist, holding different types of data related to that feature. We propose the use of Linked Data to describe the relationships between them. We demonstrate this in practice using the Australian Hydrologic Geospatial Fabric (Geofabric) feature dataset and observational data of varying forms, including time-series and discrete measurements. We describe how different resources, and different aspects and versions of them, can be discovered and accessed. A web client is described that can navigate between related resources, including using the Geofabric’s feature relationships, to navigate from one observational dataset to another related by hydrological connectivity.

Keywords

Geographical Information System Link Data Monitoring Point Spatial Data Infrastructure Geographical Information System System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  2. 2.
    ISO TC211, 19109.3 Geographic information-Rules for application schema. Int. Organ. Stand. (2005)Google Scholar
  3. 3.
    ISO TC211, ISO/DIS 19150-2 Geographic information – Ontology – Part 2: Rules for developing ontologies in the Web Ontology Language (OWL), p. 103 (June 2014)Google Scholar
  4. 4.
    Bureau of Meteorology, Australian Hydrological Geospatial Fabric (Geofabric), http://data.gov.au/dataset/australian-hydrological-geospatial-fabric-geofabric (accessed: December 09, 2014)
  5. 5.
    Atkinson, R., Dornblut, I., Smith, D.: An international standard conceptual model for sharing references to hydrologic features. J. Hydrol. 424-425, 24–36 (2012)Google Scholar
  6. 6.
    W3C, VoID Vocabulary. RDF Schema vocabulary (2013), http://www.w3.org/TR/void/
  7. 7.
    W3C, TheRDF Data Cube Vocabulary. RDF Schema vocabulary.http:// (2014), http://www.w3.org/TR/vocab-data-cube/
  8. 8.
    Miles, A., Pérez-Agüera, J.R.: SKOS: Simple Knowledge Organisation for the Web. Cat. Classif. Q. 43(3), 69–83 (2007)Google Scholar
  9. 9.
    Epimorphics, Elda: The linked-data API in Java (2014)Google Scholar
  10. 10.
    Atkinson, R.: Spatial Identifier Reference Framework (SIRF)-A Case Study on How Spatial identifier data structures can be reorirnted to suit present and future technology needs. In: Proceedings of the Pole-26th International Cartogrphic Conference, Dresden, Germany, pp. 25–30 (2013)Google Scholar
  11. 11.
    Cyganiak, R., Sauermann, L.: Cool URIs for the Semantic Web. W3C, Note (2008)Google Scholar
  12. 12.
    AKSW/Sparqlify, GitHub, https://github.com/AKSW/Sparqlify (accessed: December 9, 2014)
  13. 13.
    Rajabifard, A., Williamson, I.P.: Spatial data infrastructures: concept, SDI hierarchy and future directions (2001)Google Scholar
  14. 14.
    d’ Aquin, M., Noy, N.F.: Where to publish and find ontologies? A survey of ontology libraries. Web Semant. Sci. Serv. Agents World Wide Web 11, 96–111 (2012)CrossRefGoogle Scholar
  15. 15.
    UK Location Council, Place Matters: The Location Strategy for the United Kingdom (2008)Google Scholar
  16. 16.
    Janowicz, K., Schade, S., Bröring, A., Keßler, C., Maué, P., Stasch, C.: Semantic Enablement for Spatial Data Infrastructures. Trans. GIS 14(2), 111–129 (2010)CrossRefGoogle Scholar
  17. 17.
    Jones, J., Kuhn, W., Keßler, C., Scheider, S.: Making the Web of Data Available Via Web Feature Services. In: Huerta, J., Schade, S., Granell, C. (eds.) Connecting a Digital Europe Through Location and Place, pp. 341–361. Springer International Publishing (2014)Google Scholar
  18. 18.
    Harvey, F., Jones, J., Scheider, S.: Little Steps Towards Big Goals. Using Linked Data to Develop Next Generation Spatial Data Infrastructures (aka SDI 3.0)Google Scholar
  19. 19.
    Adams, B., Gahegan, M.: Emerging data challenges for next-generation spatial data infrastructureGoogle Scholar
  20. 20.
    Scharrenbach, T., Bischof, S., Fleischli, S., Weibel, R.: Linked Raster Data. In: Seventh International Conference on Geographic Information Science, vol. 7478 (2012)Google Scholar
  21. 21.
    Taylor, P., Cox, S., Walker, G., Valentine, D., Sheahan, P.: WaterML2.0: development of an open standard for hydrological time-series data exchange. Journal of Hydroinformatics (2013)Google Scholar
  22. 22.
    Taylor, P., Sheahan, P., Hamilton, S., Briar, D., Fry, M., Natschke, M., Valentine, D., Walker, G., Lowe, D., Cox, S.: An information model for exchanging hydrological rating tables. In: Proceedings of Hydroinformatics Conference 2014, New York, p. 8 (2014)Google Scholar
  23. 23.
    Janowicz, K., Bröring, A., Stasch, C., Schade, S., Everding, T., Llaves, A.: A restful proxy and data model for linked sensor data. Int. J. Digit. Earth 6(3), 233–254 (2013)CrossRefGoogle Scholar
  24. 24.
    Le-Phuoc, D., Hauswirth, M.: SensorMasher: Enabling open linked data in sensor data mashup (2009)Google Scholar
  25. 25.
    Broering, A., Foerster, T., Jirka, S., Priess, C.: Sensor bus: an intermediary layer for linking geosensors and the sensor web, New York, NY, USA, pp. 1–8 (2010)Google Scholar
  26. 26.
    Page, K., Roure, D.D., Martinez, K., Sadler, J., Kit, O.: Linked Sensor Data: RESTfully serving RDF and GML, Washington DC, USA, vol. 522, pp. 49–63 (2009)Google Scholar
  27. 27.
    Barnaghi, P., Meissner, S., Presser, M., Moessner, K.: Sense and Sens’ability: semantic Data Modelling for Sensor Networks (2009)Google Scholar
  28. 28.
    Wei, W., Barnaghi, P.: Semantic annotation and reasoning for sensor data, Berlin, Heidelberg, pp. 66–76 (2009)Google Scholar
  29. 29.
    Compton, M., Barnaghi, P., Bermudez, L., GarcíA-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A.: others, “The SSN ontology of the W3C semantic sensor network incubator group,”. Web Semant. Sci. Serv. Agents World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Robert A. Atkinson
    • 1
  • Peter Taylor
    • 2
  • Geoffrey Squire
    • 2
  • Nicholas J. Car
    • 3
  • Darren Smith
    • 4
  • Mark Menzel
    • 4
  1. 1.MetalinkageAustralia
  2. 2.Digital Productivity and Services Flagship: CSIRO, Hobart, TASAustralia
  3. 3.Land and Water Flagship: CSIROBrisbaneAustralia
  4. 4.Information Systems and Services Division (Environmental Information Management):, Bureau of MeteorologyMelbourneAustralia

Personalised recommendations