Monitoring Space Weather at GSSAC

  • Klaus BörgerEmail author
  • Michael Schmidt


The sun emits electromagnetic waves as well as particles, i.e. electrons and protons, and the term space weather covers all phenomena and issues related to these radiations. Space weather in general affects technical systems and therefore it has to be monitored. As well as normal weather does, space weather shows regular, but sometimes irregular behaviour, and in particular the latter can lead to significant threats to technical systems. The principal mission of the German Space Situational Awareness Center (GSSAC) is to provide a recognized space picture, which comprises the detection, prediction and assessment of hazards coming from space for the safety of systems and operations. This definitely includes space weather, since it has an enormous impact on satellites, satellite’s subsystem functionality, communication and GPS. In this regard the ionosphere has a key role. The ionosphere represents the state and the behaviour of space weather in a suitable way. Surveying the ionosphere, modelling and forecasting are important subjects at GSSAC. Hence, this presentation deals with the GSSAC activities on space weather monitoring, where first of all observation methods and modelling approaches are considered.

Key words

SSA space weather ionosphere spherical harmonics splines 



Ideas and essential topics of this paper originate from work referring to DGFI research and to OPTIMAP. OPTIMAP is a joint venture by ZGeoBw, DGFI, IAG and GSSAC, being aimed at improving ionosphere modelling.


  1. 1.
    Bilitza, D., Reinisch, B. (2008). International reference ionosphere 2007: improvements and new parameters. Adv. Space Res., 42, 599 - 609.CrossRefGoogle Scholar
  2. 2.
    Blakely, R.J. (1996). Potential Theory in Gravity and Magnetic Applications. Cambridge University Press. Cambridge.Google Scholar
  3. 3.
    Dettmering, D. (2003). Die Nutzung des GPS zur dreidimensionalen Ionosphärenmodellierung. Ph.D – thesis. Dep. of Geod. and Geoinf. University of Stuttgart, Stuttgart, Germany.Google Scholar
  4. 4.
    Jekeli, C. (2005). Spline Representations of Functions on a Sphere for Geopotential Modeling. Rep. 475, Geod. and Geoinf. Sci., Dep. of Civ. and Environ. Eng. and Geod. Sci., Ohio State University, Columbus.Google Scholar
  5. 5.
    Lyche, T., Schumaker, L.L. (2001). A multiresolution tensor spline method for fitting functions on the sphere. SIAM J. Sci. Comput. 22 (2), 724 – 746.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Schmidt, M. (2007). Wavelet modelling in support of IRI. Advances in space research 39, 932 – 940.CrossRefGoogle Scholar
  7. 7.
    Schmidt, M., Dettmering, D., Mößmer, M., Wang, Y., Zhang, J. (2011). Comparison of spherical harmonic and B spline models for the vertical total electron content. Radio Sci., 46, RS0D11, doi: 10.1029/2010RS004609.Google Scholar
  8. 8.
    Schmidt, M., Fengler, M., Mayer–Gürr, T., Eicker, A., Kusche, J., Sanchez, L., Han, S.–C. (2006). Regional Gravity Modelling in Terms of Spherical Base Functions. J Geod., doi: 10.1007/s00190–006–0101–5.Google Scholar
  9. 9.
    Stollnitz, E,J., DeRose, T.D., Salesin, D.H. (1995). Wavelets for computer graphics: a primer, Part I. IEEE Comput. Graph. Appl. 15 (3), 76 – 84, Part II. IEEE Comput. Graph. Appl. 15 (4), 75 – 85.Google Scholar
  10. 10.
    Todorova, S. (2008). Combination of space geodetic techniques for global mapping of the ionosphere. Phd–thesis. Vienna University of Technology.Google Scholar
  11. 11.
    Wanninger, L. (1994). Der Einfluß der Ionosphäre auf die Positionierung mit GPS. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover. Nr. 201.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.German Space Situational Awareness Centre (GSSAC)UedemGermany
  2. 2.Bonn University, IGG, APMGBonnGermany
  3. 3.Deutsches Geodätisches Forschungsinstitut (DGFI)MünchenGermany

Personalised recommendations