Evaluation of the Colorimetric Performance of Single-Sensor Image Acquisition Systems Employing Colour and Multispectral Filter Array

  • Xingbo WangEmail author
  • Philip J. Green
  • Jean-Baptiste Thomas
  • Jon Y. Hardeberg
  • Pierre Gouton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9016)


Single-sensor colour imaging systems mostly employ a colour filter array (CFA). This enables the acquisition of a colour image by a single sensor at one exposure at the cost of reduced spatial resolution. The idea of CFA fit itself well with multispectral purposes by incorporating more than three types of filters into the array which results in multispectral filter array (MSFA). In comparison with a CFA, an MSFA trades spatial resolution for spectral resolution. A simulation was performed to evaluate the colorimetric performance of such CFA/MSFA imaging systems and investigate the trade-off between spatial resolution and spectral resolution by comparing CFA and MSFA systems utilising various filter characteristics and demosaicking methods including intra- and inter-channel bilinear interpolation as well as discrete wavelet transformed based techniques. In general, 4-band and 8-band MSFAs provide better or comparable performance than the CFA setup in terms of CIEDE2000 and S-CIELAB colour difference. This indicates that MSFA would be favourable for colorimetric purposes.


Colorimetric performance Colour filter array Multispectral imaging Single-sensor 


  1. 1.
    Baone, G.A., Qi, H.: Demosaicking methods for multispectral cameras using mosaic focal plane array technology. In: Proc. SPIE, vol. 6062, January 2006Google Scholar
  2. 2.
    Bayer, B.E.: Color imaging array. Patent, uS 3971065 (07 1976)Google Scholar
  3. 3.
    Brauers, J., Aach, T.: A color filter array based multispectral camera. In: Group, G.C. (ed.) 12th Workshop Farbbildverarbeitung. Ilmenau, October 5–6, 2006Google Scholar
  4. 4.
    Colorimetry - Part 6: CIEDE2000 Colour-Difference Formula. No. CIE Draft Standard DS 014–6/E:2012. CIE, Vienna, Austria (2012)Google Scholar
  5. 5.
    Driesen, J., Scheunders, P.: Wavelet-based color filter array demosaicking. In: International Conference on Image Processing (ICIP), vol. 5, pp. 3311–3314. IEEE, October 2004Google Scholar
  6. 6.
    Foster, D.H., Amano, K., Nascimento, S.M.C., Foster, M.J.: Frequency of metamerism in natural scenes. J. Opt. Soc. Am. A 23(10), 2359–2372 (2006)CrossRefGoogle Scholar
  7. 7.
    Hardeberg, J.Y.: Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches. (2001)Google Scholar
  8. 8.
    Hironaga, M., Shimano, N.: Estimating the noise variance in an image acquisition system and its influence on the accuracy of recovered spectral reflectances. Appl. Opt. 49(31), 6140–6148 (November 2010)Google Scholar
  9. 9.
    Imai, F.H., Rosen, M.R., Berns, R.S.: Comparison of spectrally narrow-band capture versus wide-band with a priori sample analysis for spectral reflectance estimation. In: Proceedings of the IS&T/SID Eighth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, pp. 234–241. IS&T, Scottsdale, Arizona, November 2000Google Scholar
  10. 10.
    CIE Colorimetry - Part 1: Standard Colorimetric Observers. No. ISO 11664–1:2007(E)/CIE S 014-1/E:2006. ISO, Geneva, Switzerland (2007)Google Scholar
  11. 11.
    Adams, J.E.: Interactions between color plane interpolation and other image processing functions in electronic photography. SPIE 2416, 144–151 (1995)Google Scholar
  12. 12.
    Lapray, P.J., Wang, X., Thomas, J.B., Gouton, P.: Multispectral filter arrays: Recent advances and practical implementation. Sensors 14(11), 21626–21659 (2014)CrossRefGoogle Scholar
  13. 13.
    Menon, D., Calvagno, G.: Color image demosaicking: An overview. Image Commun. 26(8–9), 518–533 (October 2011)Google Scholar
  14. 14.
    Miao, L., Qi, H., Ramanath, R.: A generic binary tree-based progressive demosaicking method for multispectral filter array. In: IEEE International Conference on Image Processing, pp. 3221–3224 (October 2006)Google Scholar
  15. 15.
    Miao, L., Qi, H., Snyder, W.E.: A generic method for generating multispectral filter arrays. In: International Conference on Image Processing, vol. 5, pp. 3343–3346, October 2004Google Scholar
  16. 16.
    Monno, Y., Tanaka, M., Okutomi, M.: Multispectral demosaicking using adaptive kernel upsampling. In: 18th IEEE International Conference on Image Processing (ICIP), Brussels, pp. 3157–3160, September 2011Google Scholar
  17. 17.
    Monno, Y., Tanakaa, M., Okutomia, M.: Multispectral demosaicking using guided filter. In: Battiato, S., Rodricks, B.G., Sampat, N., Imai, F.H., Xiao, F. (eds.) Digital Photography VIII. Proc. of SPIE, vol. 8299, Burlingame, California, USA, pp. 82990O–82990O-7, January 2012Google Scholar
  18. 18.
    Panasonic: Primary color and complementary color filters. (retrieved on December 16, 2013)
  19. 19.
    Parulski, K.A.: Color filters and processing alternatives for one-chip cameras. IEEE Transactions on Electron Devices 32(8), 1381–1389 (1985)CrossRefGoogle Scholar
  20. 20.
    Vrhel, M.J., Gershon, R., Iwan, L.S.: Measurement and analysis of object reflectance spectra. Color Research & Application 19(1), 4–9 (1994)Google Scholar
  21. 21.
    Wang, X., Thomas, J.B., Hardeberg, J.Y., Gouton, P.: Median filtering in multispectral filter array demosaicking. In: Digital Photography IX. Proc. SPIE, vol. 8660Google Scholar
  22. 22.
    Wang, X., Thomas, J.B., Hardeberg, J.Y., Gouton, P.: Discrete wavelet transform based multispectral filter array demosaicking. In: Proc. Colour and Visual Computing Symposium (CVCS), pp. 1–6, September 2013Google Scholar
  23. 23.
    Wang, X., Thomas, J.B., Hardeberg, J.Y., Gouton, P.: A study on the impact of spectral characteristics of filters on multispectral image acquisition. In: Proc. 12th AIC Congress. AIC, July 2013Google Scholar
  24. 24.
    Wang, X., Thomas, J.B., Hardeberg, J.Y., Gouton, P.: Multispectral imaging: narrow or wide band filters? Journal of the International Colour Association 12 (July 2014)Google Scholar
  25. 25.
    Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: Post-capture control of resolution, dynamic range and spectrum. Tech. rep., Department of Computer Science, Columbia University CUCS-061-08, November 2008.
  26. 26.
    Zhang, X., Wandell, B.A.: A spatial extension of cielab for digital color-image reproduction. Journal of the Society for Information Display 5(1), 61–63 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xingbo Wang
    • 1
    • 2
    Email author
  • Philip J. Green
    • 1
  • Jean-Baptiste Thomas
    • 2
  • Jon Y. Hardeberg
    • 1
  • Pierre Gouton
    • 2
  1. 1.Norwegian Colour and Visual Computing LaboratoryGjøvik University CollegeGjøvikNorway
  2. 2.Laboratoire Electronique, Informatique et ImageUniversité de BourgogneDijonFrance

Personalised recommendations