International Workshop on Computational Color Imaging

CCIW 2015: Computational Color Imaging pp 104-110 | Cite as

The Display Gamut Available to Simulate Colors Perceived by Anomalous Trichromats

  • João M. M. Linhares
  • Jorge L. A. Santos
  • Vasco M. N. de Almeida
  • Catarina A. R. João
  • Sérgio M. C. Nascimento
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9016)

Abstract

The aim of this work was to investigate the effect on a display gamut of varying the optical density and the position of the maximum sensitivity of the cones spectra of anomalous trichromatic observers. The anomalous cone spectral sensitivities were estimated for a set of varying optical density and maximum sensitivity spectra conditions and used to compute the display color gamut. The computed display gamut simulated for normal observers the chromatic diversity perceived by anomalous observers. It was found that even small variations on the optical density and on the position of the maximum sensitivity spectra have an impact on the simulations of the display gamut for anomalous observers. It was also found that simulations for deuteroanomalous observers are the ones with greater impact if the estimation of the corresponding color display gamut is not carefully adjusted for the observer.

Keywords

Anomalous color vision Color gamut Color deficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Linhares, J.M., Pinto, P.D., Nascimento, S.M.: The number of discernible colors in natural scenes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 25(12), 2918–2924 (2008)CrossRefGoogle Scholar
  2. 2.
    Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae. 2nd edn. John Wiley & Sons, New York (1982)Google Scholar
  3. 3.
    DeMarco, P., Pokorny, J., Smith, V.C.: Full-Spectrum Cone Sensitivity Functions for X-Chromosome-Linked Anomalous Trichromates 9(9), 1465–1476 (1992)Google Scholar
  4. 4.
    Merbs, S.L., Nathans, J.: Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science (80-.) 258(5081), 464–466 (1992)CrossRefGoogle Scholar
  5. 5.
    Perales, E., Martínez-Verdú, F.M., Linhares, J.M.M., Nascimento, S.M.C.: Number of discernible colors for color-deficient observers estimated from the MacAdam limits. J. Opt. Soc. Am. A 27(10), 2106 (2010)CrossRefGoogle Scholar
  6. 6.
    Linhares, J.M.M., Felgueiras, P.E.R., Pinto, P.D., Nascimento, S.M.C.: Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers. Ophthalmic Physiol. Opt. 30(5), 618–625 (2010)CrossRefGoogle Scholar
  7. 7.
    Cole, B.L.: The handicap of abnormal colour vision. Clin. Exp. Optom. 87(4–5), 258–275 (2004)CrossRefGoogle Scholar
  8. 8.
    Webster, M.A., Juricevic, I., McDermott, K.C.: Simulations of adaptation and color appearance in observers with varying spectral sensitivity. Ophthalmic Physiol. Opt. 30(5), 602–610 (2010)CrossRefGoogle Scholar
  9. 9.
    Baraas, R.C., Foster, D.H., Amano, K., Nascimento, S.M.C.: Anomalous trichromats’ judgments of surface color in natural scenes under different daylights. Vis. Neurosci. 23(3–4), 629–635 (2006)CrossRefGoogle Scholar
  10. 10.
    Kovacs, G., Kucsera, I., Abraham, G., Wenzel, K.: Enhancing color representation for anomalous trichromats on CRT monitors. Color Res. Appl. 26, S273–S276 (2001)CrossRefGoogle Scholar
  11. 11.
    Machado, G.M., Oliveira, M.M., Fernandes, L.A.F.: A Physiologically-based Model for Simulation of Color Vision Deficiency. IEEE Trans. Vis. Comput. Graph. 15(6), 1291–1298 (2009)CrossRefGoogle Scholar
  12. 12.
    Thomas, P.B.M., Formankiewicz, M.A., Mollon, J.D.: The effect of photopigment optical density on the color vision of the anomalous trichromat. Vision Res. 51(20), 2224–2233 (2011)CrossRefGoogle Scholar
  13. 13.
    Barbur, J.L., Rodriguez-Carmona, M., Harlow, J.A., Mancuso, K., Neitz, J., Neitz, M.: A study of unusual Rayleigh matches in deutan deficiency. Vis. Neurosci. 25(3), 507–516 (2008)CrossRefGoogle Scholar
  14. 14.
    CIE, Colorimetry, CIE Publ. 15:2004. CIE, Viena (2004)Google Scholar
  15. 15.
    Brainard, D.H., Stockman, A.: Colorimetry. In: Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., MacDonald, C., Mahajan, V., Van Stryland, E. (eds.) Handbook of Optics, Volume III: Vision and Vision Optics, 3rd edn, p. 10.1. The McGraw-Hill Companies, New York (2010)Google Scholar
  16. 16.
    Knowles, A., Dartnall, H.J.A.: The characterization of visual pigments by absorption spectroscopy. In: Davson, H. (ed.) The Eye, 2nd edn, vol. 2B. Academic Press, Michigan (1997)Google Scholar
  17. 17.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The Quickhull Algorithm for Convex Hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • João M. M. Linhares
    • 1
  • Jorge L. A. Santos
    • 2
  • Vasco M. N. de Almeida
    • 2
  • Catarina A. R. João
    • 1
  • Sérgio M. C. Nascimento
    • 1
  1. 1.Center of Physics, Campus GualtarUniversity of MinhoBragaPortugal
  2. 2.Department of PhysicsUniversity of Beira InteriorCovilhãPortugal

Personalised recommendations