Advertisement

Time Series Analyses in a New Era of Optical Satellite Data

  • Patrick HostertEmail author
  • Patrick Griffiths
  • Sebastian van der Linden
  • Dirk Pflugmacher
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 22)

Abstract

Dense time series of optical remote sensing data have long been the domain of broad-scale sensors with daily near-global coverage, such as the Advanced Very High Resolution Radiometer (AVHRR), the Medium Resolution Imaging Spectrometer (MERIS), the Moderate Resolution Imaging Spectrometer (MODIS) or the Satellite Pour l’Observation de la Terre (SPOT) VEGETATION. More recently, satellite data suitable for fine-scale analyses are becoming attractive for time series approaches. The major reasons for this development are the opening of the United States Geological Survey (USGS) Landsat archive along with a standardized geometric pre-processing including terrain correction. Based on such standardized products, tools for automated atmospheric correction and cloud/cloud shadow masking advanced the capabilities to handle cloud-contamination effectively. Finally, advances in information technology for mass data processing today allow analysing thousands of satellite images with comparatively little effort. Based on these major advancements, time series analyses have become feasible for solving questions across different research domains, while the focus here is on land systems. While early studies focused on better characterising forested ecosystems, now more complex ecosystem regimes, such as shrubland or agricultural system dynamics, come into focus. Despite the evolution of a wealth of novel time series-based applications, coherent analysis schemes and good practice guidelines are scarce. This chapter accordingly strives to structure the different approaches with a focus on potential applications or user needs. We end with an outlook on forthcoming sensor constellations that will greatly advance our opportunities concerning time series analyses.

Keywords

Normalize Difference Vegetation Index Time Series Analysis Advanced Very High Resolution Radiometer United States Geological Survey Advanced Very High Resolution Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We greatly acknowledge support by the German Federal Ministry for Economic Affairs and Energy (BMWi) in the frame of the Sense Carbon project (Project no. 50EE1254). We are also grateful to contributions by the EU-FP7-funded research project I-REDD+ (Grant Agreement No 265286). This chapter is part of research framed by the USGS-NASA Landsat Science Team 2012–2016.

References

  1. Berrick SW, Leptoukh G, Farley JD, Rui H (2009) Giovanni: a web service workflow-based data visualization and analysis system. IEEE Trans Geosci Remote Sens 47:106–113CrossRefGoogle Scholar
  2. Broich M, Hansen MC, Potapov P, Adusei B, Lindquist E, Stehman SV (2011) Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. Int J Appl Earth Obs Geoinf 13:277–291CrossRefGoogle Scholar
  3. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903CrossRefGoogle Scholar
  4. Choudhury BJ, Digirolamo NE, Dorman TJ (1994) A comparison of reflectances and vegetation indices from three methods of compositing the AVHRR‐GAC data over Northern Africa. Remote Sens Rev 10:245–263CrossRefGoogle Scholar
  5. CNES (2014) CNES’s SPOT World Heritage programme to provide free SPOT satellite archive imagery over five years old for non-commercial uses [online]. Available from: http://www.cnes.fr/web/CNES-en/7134-press-releases.php?item=8193. Accessed Oct 2014
  6. Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens Environ 84:561–571CrossRefGoogle Scholar
  7. Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36CrossRefGoogle Scholar
  8. ESA (2014) Free access to COPERNICUS Sentinel satellite data [online]. Available from: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Free_access_to_Copernicus_Sentinel_satellite_data. Accessed Oct 2014
  9. Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans Geosci Remote Sens 44:2207–2218CrossRefGoogle Scholar
  10. GOFC-GOLD (2013) A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation. GOFC-GOLD Land Cover Project Office, Wageningen University, The NetherlandsGoogle Scholar
  11. Griffiths P, Müller D, Kuemmerle T, Hostert P (2013a) Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ Res Lett 8:045024CrossRefGoogle Scholar
  12. Griffiths P, van der Linden S, Kuemmerle T, Hostert P (2013b) A pixel-based Landsat compositing algorithm for large area land cover mapping. IEEE J Sel Top Appl Earth Obs Remote Sens 6:2088–2101CrossRefGoogle Scholar
  13. Gutman G, Byrnes R, Masek J, Covington S, Justice C, Franks S, Headley R (2008) Towards monitoring land-cover and land-use changes at a global scale: the Global Land Survey 2005. Photogramm Eng Remote Sens 74:6–10Google Scholar
  14. Healey SP, Cohen WB, Yang ZQ, Krankina ON (2005) Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens Environ 97:301–310CrossRefGoogle Scholar
  15. Hilker T, Wulder M, Coops N, Seitz N, White J, Gao F, Masek J, Stenhouse G (2009) Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens Environ 113:1988–1999CrossRefGoogle Scholar
  16. Hostert P, Roder A, Hill J (2003) Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands. Remote Sens Environ 87:183–197CrossRefGoogle Scholar
  17. Huang C, Goward SN, Masek JG, Thomas N, Zhu Z, Vogelmann JE (2010) An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ 114:183–198CrossRefGoogle Scholar
  18. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213CrossRefGoogle Scholar
  19. Jonsson P, Eklundh L (2004) TIMESAT – a program for analyzing time-series of satellite sensor data. Comput Geosci 30:833–845CrossRefGoogle Scholar
  20. Ju J, Roy DP, Vermote E, Masek J, Kovalskyy V (2012) Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens Environ 122:175–184CrossRefGoogle Scholar
  21. Kauth RJ, Thomas GS (1976) The tasselled cap – a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Symposium on machine processing of remotely sensed data. The Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, IN, USAGoogle Scholar
  22. Kennedy RE, Yang Z, Cohen WB (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – temporal segmentation algorithms. Remote Sens Environ 114:2897–2910CrossRefGoogle Scholar
  23. Kennedy RE, Yang Z, Cohen WB, Pfaff E, Braaten J, Nelson P (2012) Spatial and temporal patterns of forest disturbance and growth within the area of the Northwest Forest Plan. Remote Sens Environ 122:117–133CrossRefGoogle Scholar
  24. Key CH, Benson NC (2006) Landscape Assessment (LA). FIREMON: Fire effects monitoring and inventory systems. In: Lutes DC, Keane RE, Carati JF, Key CH, Benson NC (eds) General technical report RMRS-GTR-164-CD. USDA Forest Service, Rocky Mountains Research Station, Fort Collins, COGoogle Scholar
  25. Kovalskyy V, Roy DP (2013) The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sens Environ 130:280–293CrossRefGoogle Scholar
  26. Lambin EF, Strahler AH (1994) Change-vector analysis in multitemporal space – a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens Environ 48:231–244CrossRefGoogle Scholar
  27. Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241CrossRefGoogle Scholar
  28. Landsat Project Science Office (2010) Landsat 7 science data users handbook. Goddard Space Flight Center in Greenbelt, NASA, MarylandGoogle Scholar
  29. Main-Knorn M, Cohen WB, Kennedy RE, Grodzki W, Pflugmacher D, Griffiths P, Hostert P (2013) Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sens Environ 139:277–290CrossRefGoogle Scholar
  30. Masek JG, Vermote EF, Saleous NE, Wolfe R, Hall FG, Huemmrich KF, Gao F, Kutler J, Lim TK (2006) A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci Remote Sens Lett 3:68–72CrossRefGoogle Scholar
  31. Mayaux P, Lambin EF (1995) Estimation of tropical forest area from coarse spatial-resolution data – a 2-step correction function for proportional errors due to spatial aggregation. Remote Sens Environ 53:1–15CrossRefGoogle Scholar
  32. MEA (2005) Ecosystems and human well-being: synthesis. In: World Resources Institute (ed) Millennium ecosystem assessment. Island Press and World Resources Institute, Washington, DCGoogle Scholar
  33. Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231CrossRefGoogle Scholar
  34. Nightingale J, Morisette J, Wolfe R, Tan B, Gao F, Ederer G, Collatz G, Turner D (2009) Temporally smoothed and gap‐filled MODIS land products for carbon modelling: application of the f PAR product. Int J Remote Sens 30:1083–1090CrossRefGoogle Scholar
  35. Pflugmacher D, Cohen WB, Kennedy RE (2012) Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens Environ 122:146–165CrossRefGoogle Scholar
  36. Pflugmacher D, Grogan K, Thongmanivong S, Hett C, Fensholt R, Hostert P (2014) Historic trends of deforestation and forest degradation in Houaphan province, Laos. Impacts of reducing emissions from deforestation and forest degradation and enhancing forest carbon stocks (I‐REDD+), Deliverable 3.4Google Scholar
  37. Powell SL, Cohen WB, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens Environ 114:1053–1068CrossRefGoogle Scholar
  38. Roy DP, Boschetti L, Justice CO, Ju J (2008) The collection 5 MODIS burned area product – global evaluation by comparison with the MODIS active fire product. Remote Sens Environ 112:3690–3707CrossRefGoogle Scholar
  39. Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P, Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymburner L, Masek JG, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne RH, Zhu Z (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172CrossRefGoogle Scholar
  40. Senf C, Pflugmacher D, van der Linden S, Hostert P (2013) Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from MODIS time series. Remote Sens 5:2795–2812CrossRefGoogle Scholar
  41. Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon – satellite data from 1978 to 1988. Science 260:1905–1910CrossRefGoogle Scholar
  42. UNFCC (2002) Report of the conference of the parties on its seventh session, held in Marrakech from Oct–Nov 2001. In: UNFCCC (eds) Addendum Part Two: action taken by the conference of the parties, FCCC/CP/2001/13/Add. 1, vol I. United Nations Framework Convention on Climate Change Secretariat, BonnGoogle Scholar
  43. USGS (2012) Landsat data continuity mission (LDCM) Level 1 (L1) Data format control book (DFCB). USGS, Sioux FallsGoogle Scholar
  44. Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114:106–115CrossRefGoogle Scholar
  45. Vitousek PM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  46. Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W, Gao F, Goward SN, Helder D, Helmer E, Nemani R, Oreopoulos L, Schott J, Thenkabail PS, Vermote EF, Vogelmann J, Wulder MA, Wynne R (2008) Free access to Landsat imagery. Science 320:1011CrossRefGoogle Scholar
  47. Woodwell GM, Houghton RA, Stone TA, Nelson RF, Kovalick W (1987) Deforestation in the tropics – new measurements in the Amazon Basin using Landsat and NOAA advanced very high-resolution radiometer imagery. J Geophys Res-Atmos 92:2157–2163CrossRefGoogle Scholar
  48. Wulder MA, White JC, Masek JG, Dwyer J, Roy DP (2011) Continuity of Landsat observations: short term considerations. Remote Sens Environ 115:747–751CrossRefGoogle Scholar
  49. Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10CrossRefGoogle Scholar
  50. Yin H, Pflugmacher D, Kennedy RE, Sulla-Menashe D, Hostert P (2014) Mapping annual land use and land cover changes using MODIS time series. IEEE J Sel Top Appl Earth Obs Remote Sens 7:3421–3427CrossRefGoogle Scholar
  51. Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475CrossRefGoogle Scholar
  52. Zhu Z, Woodcock CE (2012) Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ 118:83–94CrossRefGoogle Scholar
  53. Zhu XL, Chen J, Gao F, Chen XH, Masek JG (2010) An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens Environ 114:2610–2623CrossRefGoogle Scholar
  54. Ziegler AD, Phelps J, Yuen JQ, Webb EL, Lawrence D, Fox JM, Bruun TB, Leisz SJ, Ryan CM, Dressler W, Mertz O, Pascual U, Padoch C, Koh LP (2012) Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD plus policy implications. Glob Chang Biol 18:3087–3099CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Patrick Hostert
    • 1
    • 2
    Email author
  • Patrick Griffiths
    • 1
  • Sebastian van der Linden
    • 1
    • 2
  • Dirk Pflugmacher
    • 1
  1. 1.Geography DepartmentHumboldt-Universität zu BerlinBerlinGermany
  2. 2.IRI THESysHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations