To DE or Not to DE? Multi-objective Differential Evolution Revisited from a Component-Wise Perspective

  • Leonardo C. T. Bezerra
  • Manuel López-Ibáñez
  • Thomas Stützle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9018)

Abstract

Differential evolution (DE) research for multi-objective optimization can be divided into proposals that either consider DE as a stand-alone algorithm, or see DE as an algorithmic component that can be coupled with other algorithm components from the general evolutionary multiobjective optimization (EMO) literature. Contributions of the latter type have shown that DE components can greatly improve the performance of existing algorithms such as NSGA-II, SPEA2, and IBEA. However, several experimental factors have been left aside from that type of algorithm design, compromising its generality. In this work, we revisit the research on the effectiveness of DE for multi-objective optimization, improving it in several ways. In particular, we conduct an iterative analysis on the algorithmic design space, considering DE and environmental selection components as factors. Results show a great level of interaction between algorithm components, indicating that their effectiveness depends on how they are combined. Some designs present state-of-the-art performance, confirming the effectiveness of DE for multi-objective optimization.

Keywords

Multi-objective optimization Evolutionary algorithms Differential evolution Component-wise design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefMATHGoogle Scholar
  2. 2.
    Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic component-wise design of multi-objective evolutionary algorithms. Tech. Rep. TR/IRIDIA/2014-012, IRIDIA, Université Libre de Bruxelles, Belgium, Brussels (2014)Google Scholar
  3. 3.
    Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic design of evolutionary algorithms for multi-objective combinatorial optimization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 508–517. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Deconstructing multi-objective evolutionary algorithms: An iterative analysis on the permutation flowshop. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 57–172. Springer, Heidelberg (2014) Google Scholar
  5. 5.
    Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: To DE or not to DE? Multi-objective differential evolution revisited from a component-wise perspective, (2015). http://iridia.ulb.ac.be/supp/IridiaSupp2015-001/
  6. 6.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), (2011)Google Scholar
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  8. 8.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., et al. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Advanced Information and Knowledge Processing, Springer, London (2005)CrossRefGoogle Scholar
  9. 9.
    Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)CrossRefGoogle Scholar
  10. 10.
    Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: IEEE CEC, pp. 443–450. IEEE Press (2005)Google Scholar
  11. 11.
    López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)Google Scholar
  12. 12.
    López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)CrossRefGoogle Scholar
  13. 13.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, New York (2005)Google Scholar
  14. 14.
    Robič, T., Filipič, B.: DEMO: Differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  15. 15.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Tušar, T.: Design of an Algorithm for Multiobjective Optimization with Differential Evolution. M.sc. thesis, Faculty of Computer and Information Science, University of Ljubljana (2007)Google Scholar
  17. 17.
    Tušar, T., Filipič, B.: Differential evolution versus genetic algorithms in multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 257–271. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  18. 18.
    Zhang, Q., Suganthan, P.N.: Special session on performance assessment of multiobjective optimization algorithms/CEC 2009 MOEA competition, (2009). http://dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm
  19. 19.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  20. 20.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al. (eds.) EUROGEN, pp. 95–100. CIMNE, Barcelona (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leonardo C. T. Bezerra
    • 1
  • Manuel López-Ibáñez
    • 1
  • Thomas Stützle
    • 1
  1. 1.IRIDIAUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations