Advertisement

Parameter Tuning of MOEAs Using a Bilevel Optimization Approach

  • Martin AnderssonEmail author
  • Sunith Bandaru
  • Amos Ng
  • Anna Syberfeldt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9018)

Abstract

The performance of an Evolutionary Algorithm (EA) can be greatly influenced by its parameters. The optimal parameter settings are also not necessarily the same across different problems. Finding the optimal set of parameters is therefore a difficult and often time-consuming task. This paper presents results of parameter tuning experiments on the NSGA-II and NSGA-III algorithms using the ZDT test problems. The aim is to gain new insights on the characteristics of the optimal parameter settings and to study if the parameters impose the same effect on both NSGA-II and NSGA-III. The experiments also aim at testing if the rule of thumb that the mutation probability should be set to one divided by the number of decision variables is a good heuristic on the ZDT problems. A comparison of the performance of NSGA-II and NSGA-III on the ZDT problems is also made.

Keywords

Parameter tuning NSGA-II NSGA-III ZDT Bilevel optimization Multi-objective problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck, T.: Parallel optimization of evolutionary algorithms. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 418–427. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  2. 2.
    Das, I., Dennis, J.: Normal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization 8(3), 631–657 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577–601 (2014)CrossRefGoogle Scholar
  4. 4.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  5. 5.
    Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)CrossRefGoogle Scholar
  6. 6.
    Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)CrossRefGoogle Scholar
  7. 7.
    Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 16(1), 122–128 (1986)CrossRefGoogle Scholar
  8. 8.
    Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: PPSN, pp. 15–26 (1992)Google Scholar
  9. 9.
    Ugolotti, R., Cagnoni, S.: Analysis of evolutionary algorithms using multi-objective parameter tuning. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 1343–1350. ACM, New York (2014)Google Scholar
  10. 10.
    Wessing, S., Beume, N., Rudolph, G., Naujoks, B.: Parameter tuning boosts performance of variation operators in multiobjective optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 728–737. Springer, Heidelberg (2010) Google Scholar
  11. 11.
    While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Transactions on Evolutionary Computation 16(1), 86–95 (2012)CrossRefGoogle Scholar
  12. 12.
    Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, Shaker Verlag (1999)Google Scholar
  13. 13.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martin Andersson
    • 1
    Email author
  • Sunith Bandaru
    • 1
  • Amos Ng
    • 1
  • Anna Syberfeldt
    • 1
  1. 1.Virtual Systems Research CentreUniversity of SkövdeSkövdeSweden

Personalised recommendations