Advertisement

Towards an Empirical Test of Realism in Cognition

  • James M. YearsleyEmail author
  • Emmanuel M. Pothos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8951)

Abstract

We review recent progress in designing an empirical test of (temporal) realism in cognition. Realism in this context is the property that cognitive variables always have well defined (if possibly unknown) values at all times. We focus most of our attention in this contribution on discussing the exact notion of realism that is to be tested, as we feel this issue has not received enough attention to date. We also give a brief outline of the empirical test, including some comments on an experimental realisation, and we discuss what we should conclude from any purported experimental ‘disproof’ of realism. This contribution is based on Yearsley and Pothos (2014).

Notes

Acknowledgments

E.M.P. and J.M.Y. were supported by Leverhulme Trust grant no. RPG-2013-00. Further, E.M.P. was supported by Air Force Office of Scientific Research (AFOSR), Air Force Material Command, USAF, grants no. FA 8655-13-1-3044. The US Government is authorized to reproduce and distribute reprints for Governmental purpose notwithstanding any copyright notation thereon.

References

  1. Aerts, D., Aerts, S.: Applications of quantum statistics in psychological studies of decision processes. Found. Sci. 1, 85–97 (1995)CrossRefMathSciNetGoogle Scholar
  2. Aerts, D., Aerts, S., Broekaert, J., Gabora, L.: The violation of Bell inequalities in the macroworld. Found. Phys. 30(9), 1387–1414 (2000)CrossRefMathSciNetGoogle Scholar
  3. Aerts, D., Gabora, L.: A theory of concepts and their combinations II: a hilbert space representation. Kybernetes 34, 192–221 (2005)CrossRefzbMATHGoogle Scholar
  4. Atmanspacher, H., Romer, H., Wallach, H.: Weak quantum theory: formal framework and selected applications. Weak quantum theory: complementarity and entanglement in physics and beyond. Found. Phys. 32, 379–406 (2006)CrossRefGoogle Scholar
  5. Atmanspacher, H., Filk, T.: A proposed test of temporal nonlocality in bistable perception. J. Math. Psychol. 54, 314–321 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. Ballentine, L.E.: Phys. Rev. Lett. 59, 1493 (1987)Google Scholar
  7. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  8. Bruza, P.D., Kitto, K., Nelson, D., McEvoy, C.L.: Is there something quantum-like about the human mental lexicon? J. Math. Psychol. 53, 362–377 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  9. Bruza, P.D., Kitto, K., Ramm, J.R., Sitbon, L.: A probabilistic framework for analysing the compositionality of conceptual combinations (2013). arXiv preprint arXiv:1305.5753
  10. Busemeyer, J.R., Bruza, P.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2011)Google Scholar
  11. Busemeyer, J.R., Pothos, E.M., Franco, R., Trueblood, J.: A quantum theoretical explanation for probability judgment errors. Psychol. Rev. 118, 193–218 (2011)CrossRefGoogle Scholar
  12. Conte, E., Khrennikov, A.Y., Todarello, O., De Robertis, R., Federici, A., Zbilut, J.P.: A preliminary experimental verification on the possibility of bell inequality violation in mental states. NeuroQuantology 6(3), 214–221 (2008)CrossRefGoogle Scholar
  13. Fine, A.: Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 23, 1306–1310 (1982)CrossRefMathSciNetGoogle Scholar
  14. George, R., Robledo, L., Maroney, O., Blok, M., Bernien, H., Markham, M., Twitchen, D., Morton, J., Briggs, A., Hanson, R.: Proc. Natl. Acad. Sci. 110, 3777–3781 (2013)CrossRefGoogle Scholar
  15. Halliwell, J.J.: Two proofs of Fine’s theorem. Phys. Lett. A 378, 2945–2950 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  16. Graben, P.B., Atmanspacher, H.: Extending the philosophical significance of the idea of complementarity. In: Atmanspacher, H., Primas, H. (eds.) Recasting Reality. Wolfgang Pauli’s Philosophical Ideas and Contemporary Science, pp. 99–113. Springer, Heidelberg (2009)Google Scholar
  17. Hardy, L.: Quantum theory from five reasonable axioms (2001). arXiv preprint arXiv:quant-ph/0101012
  18. Howe, M.L., Courage, M.L.: The emergence and early development of autobiographical memory. Psychol. Rev. 104, 499–523 (1997)CrossRefGoogle Scholar
  19. Jammer, M.: The Conceptual Development of Quantum Mechanics. McGraw Hill, New York (1966)Google Scholar
  20. Jones, M., Love, B.C.: Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behav. Brain Sci. 34(169), 231 (2011)Google Scholar
  21. Kitto, K.: Why quantum theory? In: Proceedings of the Second Quantum Interaction Symposium, pp. 11–18. College Publications (2008)Google Scholar
  22. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985)CrossRefMathSciNetGoogle Scholar
  23. Palacios-Laloy, A., Mallet, F., Nugyen, F., Bernet, P., Vion, D., Esteve, D., Korotkov, A.N.: Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442 (2010)CrossRefGoogle Scholar
  24. Pothos, E.M., Busemeyer, J.R.: A quantum probability explanation for violations of ‘rational’ decision theory. Proc. R. Soc. B 276, 2171–2178 (2009)CrossRefGoogle Scholar
  25. Pothos, E.M., Busemeyer, J.R.: Can quantum probability provide a new direction for cognitive modelling? Behav. Brain Sci. 36, 255–327 (2013)CrossRefGoogle Scholar
  26. Raijmakers, M.E.J., Molenaar, P.C.M.: Modelling developmental transitions in adaptive resonance theory. Dev. Sci. 7, 149–157 (2004)CrossRefGoogle Scholar
  27. Trueblood, J.S., Busemeyer, J.R.: A comparison of the belief-adjustment model and the quantum inference model as explanations of order effects in human inference. Cogn. Sci. 35, 1518–1552 (2011)CrossRefGoogle Scholar
  28. Tsirelson, B.S.: Quantum generalizations of Bell‘s inequality. Lett. Math. Phys. 4, 93 (1980)CrossRefMathSciNetGoogle Scholar
  29. Wang, Z., Busemeyer, J.R.: A quantum question order model supported by empirical tests of an a priori and precise prediction. TICS 5, 689–710 (2013)Google Scholar
  30. Wang, Z., Solloway, T., Shiffrin, R.M., Busemeyer, J.: Context effects produced by question orders reveal quantum nature of human judgments. PNAS 111(26), 9431–9436 (2014)CrossRefGoogle Scholar
  31. White, L.C., Pothos, E.M., Busemeyer, J.R.: Sometimes it does hurt to ask: the constructive role of articulating impressions. Cognition 133(1), 48–64 (2014)CrossRefGoogle Scholar
  32. Wilde, M.M., Mizel, A.: Addressing the clumsiness loophole in a Leggett-Garg test of macrorealism. Found. Phys. 42, 256–265 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  33. Yearsley, J.M.: The Leggett-Garg inequalities and non-invasive measurability (2013). Pre-print arXiv.org/abs/1310.2149
  34. Yearsley, J.M., Pothos, E.M.: Challenging the classical notion of time in cognition: a quantum perspective. Proc. R. Soc. B 281(1781), 20133056 (2014)CrossRefGoogle Scholar
  35. Yearsley, J.M., Pothos, E.M.: An Empirical Test of Temporal Realism in Cognition (in preparation)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PsychologyCity University LondonLondonUK

Personalised recommendations