An Ontology Matching Approach for Improvement of Business Process Management

  • Katalin Ternai
  • Marjan Khobreh
  • Fazel Ansari


This paper introduces and elaborates a semi-automatic methodology for improving business processes. It holds the concept of process ontology matching, based on ontologies derived from business process models and relevant reference models. The ontology matching approach provides information for indicating deviations between "TO-BE" and "AS-IS" business processes. It ultimately identifies opportunities for modeling and analyzing the current processes, and optimizing and redesigning (ideal) “To-BE” processes. The present methodology has been successfully developed, applied and tested in the context of eBest project and on higher education processes. Furthermore, the prospective of applying the methodology on vocational education of healthcare professionals particularly nurses has been studied in Med-Assess project and is considered for further development in Pro-Nursing project.


Business Process Semantic Annotation Ontology Model Business Process Model Compliance Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Teece, D.J.: Business Models, Business Strategy and Innovation, Long Range Planning Amsterdam, vol. 43, pp. 172–194. Elsevier Science Press (2010)Google Scholar
  2. 2.
    Fensel, D., Hepp, M., Leymann, F.: Semantic Business Process Management: Using Semantic Web Services for Business Process Management. In: IEEE Conference on e-Business Engineering (ICEBE 2005), Beijing, China (2005)Google Scholar
  3. 3.
    Attaran, M.: Exploring the relationship between information technology and business process reengineering. Information and Management 41(5), 585–596 (2004)CrossRefGoogle Scholar
  4. 4.
    Grant, D.: A wider view of business process reengineering. Communications of the ACM 45(2), 85–90 (2002)CrossRefGoogle Scholar
  5. 5.
    Hammer, M., Champy, J.: Reengineering the corporation: A manifesto for business revolution. Harper Business Books. New York (1993)Google Scholar
  6. 6.
    Hill, J.B., Sinur, J., Flint, D., Melenovsky, M.J.: Gartner’s position on business process management, Business Issues. Gartner, Inc., Report ID Number: G00136533 (2006)Google Scholar
  7. 7.
    Hill, J.B., Cantara, M., Deitert, E., Kerremans, M.: Magic Quadrant for Business Process Management Suites. Business Issues. Gartner, Inc., Report ID Number: G001252906 (2007)Google Scholar
  8. 8.
    Davenport, T.H.: The Coming Commoditization of Processes. Harvard Business Review 83(6) (2005)Google Scholar
  9. 9.
    Scheer, A.W., Abolhassan, F., Jost, W., Kirchmer, M.: Business Process Excellence - ARIS in practice. Springer, Berlin (2002)Google Scholar
  10. 10.
    Berardi, D., Calvanese, D., Giacomo, G.: Reasoning on UML class diagrams. J. Artificial Intelligence 168(1), 70–118 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gábor, A., Szabó, A.: Semantic Technologies in Business Process Management. In: Fathi, M. (ed.) Integration of practice-oriented knowledge technology: trends and prospectives, pp. 17–28. Springer (2013)Google Scholar
  12. 12.
    Naveh, E., Marcus, A.: When Does the ISO 9000 Quality Assurance Standard Lead to Performance Improvement? Assimilation and Going Beyond. IEEE Transactions on Engineering Management 51(3), 352 (2004)CrossRefGoogle Scholar
  13. 13.
    Weber, R.: Ontological Foundations of Information Systems. Coopers & Lybrand Research Methodology Monograph 4 (1997)Google Scholar
  14. 14.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)Google Scholar
  15. 15.
    Hepp, M., Cardoso, J., Lytras, M.D.: The Semantic Web: Real-World Applications from Industry. Springer (2007)Google Scholar
  16. 16.
    Karastoyanova, D., Lessen, T., Leymann1, F., Ma, Z., Nitzsche, J., Wetzstein, B., Bhiri, S., Hauswirth, M., Zaremba, M.: A Reference Architecture for Semantic Business Process Management Systems. In: Multi konferenz Wirtschaftsinformatik GITO-Verlag, Berlin (2008)Google Scholar
  17. 17.
    Török, L.: Ontology based workflow architecture implementation for SMEs - case study. In: Cunningham, M. (ed.) eChallenges e-2011 Conference Proceedings, IIMC International Information Management Corporation, Cunningham (2011)Google Scholar
  18. 18.
    Ternai, K., Török, M.: Business process modelling and implementation in collaborating environments. J.E-Business Development. 2(4), 2225–7411 (2012)Google Scholar
  19. 19.
    Herborn, T., Wimmer, M.: Process ontologies facilitating interoperability in egovernment, A methodological framework. In: Workshop on Semantics for Business Process Management, the 3rd Semantic Web Conference, Montenegro (2006)Google Scholar
  20. 20.
    Benjamins, V., Fensel, R., Straatman, D.: Assumptions of problem-solving methods and their role in knowledge engineering. In: Wahlster, W. (ed.) Poceedings ECAI-1996, pp. 408–412 (1996)Google Scholar
  21. 21.
    Olivé, À.: Conceptual schema-centric development: A grand challenge for information systems research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 1–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software Production Environment Based on Conceptual Modeling. Springer, New York (2007)Google Scholar
  23. 23.
    Hoefferer, P.: Achieving business process model interoperability using meta models and ontologies. In: Sterle, H., Schelp, J., Winter, R. (eds.) Proceedings of the 15th European Conference on Information Systems (ECIS 2007), pp. 1620–1631 (2007)Google Scholar
  24. 24.
    Alasoud, A., Haarslev, V., Nematollaah, S.: An Effective Ontology Matching Technique. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems, pp. 585–590. Springer (2008)Google Scholar
  25. 25.
    Noy, N., Semantic, F.: integration: a survey of ontology-based approaches. SIGMOD Rec. 33, 65–70 (2004)CrossRefGoogle Scholar
  26. 26.
    Namyoun, C.: Il-Yeol Song, Hyoil, H. A survey on ontology mapping. SIGMOD Rec. 35, 34–41 (2006)Google Scholar
  27. 27.
    OWLDiff: OWL Diff Documentation (2008),; The last date of visiting the link: September 13, 2014
  28. 28.
    Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine learning approach. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 385–516 (2004)Google Scholar
  29. 29.
    Mitra, P., Noy, N.F., Jaiswal, A.R.: OMEN: A Probabilistic Ontology Mapping Tool. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) The Semantic Web – ISWC, pp. 537–547. Springer (2005)Google Scholar
  30. 30.
    Li, J.: LOM: a lexicon-based ontology mapping tool. In: Information Interpretation and Integration Conference, I3CON (2004)Google Scholar
  31. 31.
    Protégé community, (last accessed: August 02, 2014)
  32. 32.
    Koschmider, A., Oberweis, A.: Ontology based business process description. In: CAiSE, pp. 321–333 (2005)Google Scholar
  33. 33.
    Jung, J., Semantic, J.: business process integration based on ontology alignment. Expert Systems with Applications 36(8), 11013–11020 (2009)CrossRefGoogle Scholar
  34. 34.
    BOC ADONIS 4.0 User Manual- Method Manual, BPMS Method (2009)Google Scholar
  35. 35.
    eBEST-Empowering Business Ecosystems of Small Service Enterprises to Face the Economic Crisis. The project co-funded by the European Commission, FP7-SME-2008-2 No. 243554,
  36. 36.
    Med-Assess – Adaptive Medical Profession Assessor, Official homepage of Med-Assess Project,
  37. 37.
    Khobreh, M., Ansari, F., Dornhöfer, M., Fathi, M.: An ontology-based Recommender System to Support Nursing Education and Training. In: German Conference on Learning, Knowledge, Adaptation (LWA-2013), Bamberg, Germany (2013)Google Scholar
  38. 38.
    Khobreh, M., Ansari, F., Dornhöfer, M., Vas, R., Fathi, M.: Med-assess system for evaluating and enhancing nursing job knowledge and performance. In: Rensing, C., de Freitas, S., Ley, T., Muñoz-Merino, P.J. (eds.) EC-TEL 2014. LNCS, vol. 8719, pp. 494–497. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Information SystemsCorvinus University of BudapestBudapestHungary
  2. 2.Institute of Knowledge Based Systems, Department of Electrical Engineering & Computer ScienceUniversity of SiegenSiegenGermany

Personalised recommendations