Bidimensional Process Discovery for Mining BPMN Models

  • Jochen De WeerdtEmail author
  • Seppe K. L. M. vanden Broucke
  • Filip Caron
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 202)


This paper presents “BPMN Miner”, a process discovery technique that uses BPMN as the representational language for the discovery result. The proposed approach is novel in the sense that it is able to represent control-flow with BPMN constructs, but also because it augments the control-flow perspective with an organizational dimension by discovering swimlanes that represent organizational roles in the business process. Additional advantages of the proposed mining approach can be summarized as follows: it provides intuitive and easy-to-use abstraction/specification functionality which makes it applicable to event logs with various complexity levels, it provides instant feedback about the conformance between the input log and the resulting model based on a dedicated fitness metric, it is robust to noise, and it can easily integrate with modeling and other BPM tools with exporting functionality through the XPDL-format. In this way, BPMN Miner will take process mining one step closer to the status of indispensable for business process reengineering as discovered models are immediately available in the preferred language of a majority of practitioners, educators and researchers.


Process mining Process discovery Business Process Model and Notation BPMN 



We thank the KU Leuven research council for financial support under grant OT/10/010.


  1. 1.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  2. 2.
    Murata, T.: Petri nets:properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  3. 3.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151–162 (2003)Google Scholar
  4. 4.
    van der Aalst, W., Adriansyah, A., van Dongen, B.: Causal nets: a modeling language tailored towards process discovery. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 28–42. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. 5.
    Scheer, A.W., Thomas, O., Adam, O.: Process modeling using event-driven process chains. In: Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M. (eds.) Process-Aware Information Systems: Bridging People and Software Through Process Technology. Wiley, Hoboken (2005) Google Scholar
  6. 6.
    Object Management Group (OMG): Business Process Model and Notation (BPMN) Version 2.0. OMG Document - formal/2011-01-03 (2011)Google Scholar
  7. 7.
    Object Management Group (OMG): Business Process Model and Notation (BPMN) Version 1.2. OMG Document - formal/2009-01-03 (2009)Google Scholar
  8. 8.
    Dijkman, R.M.: Choreography-based design of business collaborations. Technical report, Eindhoven University of Technology (2006)Google Scholar
  9. 9.
    Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis of BPMN process models. Technical report, Queensland University of Technology (2007)Google Scholar
  10. 10.
    Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Lam, V.S.: A precise execution semantics for BPMN. IAENG Int. J. Comput. Sci. 39(1), 20–33 (2012)Google Scholar
  12. 12.
    Dijkman, R., Van Gorp, P.: BPMN 2.0 execution semantics formalized as graph rewrite rules. In: Mendling, J., Weidlich, M., Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 16–30. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  13. 13.
    zur Muehlen, M., Recker, J.: How much language is enough? theoretical and practical use of the business process modeling notation. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.) Seminal Contributions to Information Systems Engineering, pp. 429–443. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Recker, J.: Opportunities and constraints: the current struggle with BPMN. Bus. Proc. Manag. J. 16(1), 181–201 (2010)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Recker, J.C.: BPMN modeling-who, where, how and why. BPTrends 5(3), 1–8 (2008)Google Scholar
  16. 16.
    Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput. Stand. Interfaces 34(1), 124–134 (2012)CrossRefGoogle Scholar
  17. 17.
    Claes, J., Poels, G.: Process mining and the ProM framework: an exploratory survey. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 187–198. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Rozman, T., Horvat, R.V., Rozman, I.: Modeling the standard compliant software processes in the university environment. Bus. Process Manag. J. 14(1), 53–64 (2008)CrossRefGoogle Scholar
  20. 20.
    van der Aalst, W.M.P.: On the representational bias in process mining. In: Reddy, S., Tata, S. (eds.): WETICE, pp. 2–7. IEEE Computer Society (2011)Google Scholar
  21. 21.
    van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011 Workshops, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data mining: Towards a unifying framework. In: KDD, pp. 82–88 (1996)Google Scholar
  23. 23.
    Weijters, A.J.M.M., van der Aalst, W.M.P., Alves de Medeiros, A.K.: Process mining with the heuristicsminer algorithm. BETA working paper series 166, TU Eindhoven (2006)Google Scholar
  24. 24.
    van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Support. Coop. Work 14(6), 549–593 (2005)CrossRefGoogle Scholar
  25. 25.
    Alves de Medeiros, A., Weijters, A., van der Aalst, W.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jochen De Weerdt
    • 1
    Email author
  • Seppe K. L. M. vanden Broucke
    • 1
  • Filip Caron
    • 1
  1. 1.Department of Decision Sciences and Information ManagementKU LeuvenLeuvenBelgium

Personalised recommendations