Advertisement

Exploring Processes and Deviations

  • Sander J. J. LeemansEmail author
  • Dirk Fahland
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 202)

Abstract

In process mining, one of the main challenges is to discover a process model, while balancing several quality criteria. This often requires repeatedly setting parameters, discovering a map and evaluating it, which we refer to as process exploration. Commercial process mining tools like Disco, Perceptive and Celonis are easy to use and have many features, such as log animation, immediate parameter feedback and extensive filtering options, but the resulting maps usually have no executable semantics and due to this, deviations cannot be analysed accurately. Most more academically oriented approaches (e.g., the numerous process discovery approaches supported by ProM) use maps having executable semantics (models), but are often slow, make unrealistic assumptions about the underlying process, or do not provide features like animation and seamless zooming. In this paper, we identify four aspects that are crucial for process exploration: zoomability, evaluation, semantics, and speed. We compare existing commercial tools and academic workflows using these aspects, and introduce a new tool, that aims to combine the best of both worlds. A feature comparison and a case study show that our tool bridges the gap between commercial and academic tools.

Keywords

Process exploration Multi-perspective process mining Process deviation visualisation Conformance analysis 

Notes

Acknowledgement

We thank Robin Wolffensperger for his contributions to the positioning of log moves.

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Weijters, A., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  3. 3.
    Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Eindhoven University of Technology (2014)Google Scholar
  4. 4.
    Bautista, A.D., Wangikar, L., Akbar, S.M.K.: Process mining-driven optimization of a consumer loan approvals process - The BPIC 2012 challenge case study. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 219–220. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Buijs, J.C.A.M.: Environmental permit application process (‘wabo’), CoSeLoG project - municipality 1 (2014). http://dx.doi.org/10.4121/uuid:c45dcbe9-557b-43ca-b6d0-10561e13dcb5
  6. 6.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)Google Scholar
  7. 7.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    van Dongen, B.F.: BPI Challenge 2012 Dataset (2012). http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
  9. 9.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W.E., Weijters, A.J.M.M.T., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  10. 10.
    Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  12. 12.
    Günther, C.W., Rozinat, A.: Disco: discover your processes. In: BPM (Demos). CEUR Workshop Proceedings, vol. 940, pp. 40–44. CEUR-WS.org (2012)Google Scholar
  13. 13.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 66–78. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  14. 14.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  15. 15.
    de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: discovering decisions in processes using alignments. In: SAC, pp. 1454–1461. ACM (2013)Google Scholar
  16. 16.
    Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did I misbehave? Diagnostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  17. 17.
    Rozinat, A.: Process mining: conformance and extension. Ph.D. thesis, Eindhoven University of Technology (2010)Google Scholar
  18. 18.
    Schimm, G.: Process miner - a tool for mining process schemes from event-based data. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 525–528. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  19. 19.
    Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  20. 20.
    Weijters, A., Ribeiro, J.: Flexible Heuristics Miner. In: CIDM, pp. 310–317. IEEE (2011)Google Scholar
  21. 21.
    van der Werf, J., van Dongen, B.F., Hurkens, C., Serebrenik, A.: Process discovery using integer linear programming. Fundam. Inform. 94(3–4), 387–412 (2009)zbMATHGoogle Scholar
  22. 22.
    Wynn, M., Rozinat, A., van der Aalst, W.M.P., ter Hofstede, A., Fidge, C.: Process mining and simulation. In: Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N. (eds.) Modern Business Process Automation, pp. 437–457. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sander J. J. Leemans
    • 1
    Email author
  • Dirk Fahland
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations