Using Data-Object Flow Relations to Derive Control Flow Variants in Configurable Business Processes

  • Riccardo CogniniEmail author
  • Flavio Corradini
  • Andrea Polini
  • Barbara Re
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 202)


Focusing on the relationship between behavioural and information perspectives in this paper we present an approach to support flexibility of Business Processes. The approach extends Feature Model descriptions with data-objects in order to derive process fragments and process variants. The approach has been applied to a data-intensive scenario such as the reporting activity of EU projects with encouraging results.


Business process Variability Data object management 


  1. 1.
    Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing data anomalies in process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 5–16. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  2. 2.
    Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: VIVACE: a framework for the systematic evaluation of variability support in process-aware information systems (in press)Google Scholar
  3. 3.
    Capilla, R., Bosch, J., Kang, K.C.: Systems and Software Variability Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Cognini, R., Corradini, F., Gnesi, S., Polini, A., Re, B.: Research challenges in Business Process Adaptability. In: SATTA@SAC, pp. 1049–1054 (2014)Google Scholar
  5. 5.
    Gröner, G., Bošković, M., Silva Parreiras, F., Gašević, D.: Modeling and validation of business process families. Inf. Syst. 38(5), 709–726 (2013)CrossRefGoogle Scholar
  6. 6.
    Kang, K., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis feasibility study. Technical report, DTIC Doc (1990)Google Scholar
  7. 7.
    La Rosa, M., Dumas, M., ter Hofstede, A.H.M., Mendling, J., Gottschalk, F.: Beyond control-flow: extending business process configuration to roles and objects. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 199–215. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    La Rosa, M., van der Aalst, W.M., Dumas, M., Milani, F.P.: Business process variability modeling: a survey (2013)Google Scholar
  9. 9.
    Müller, D., Reichert, M., Herbst, J.: Flexibility of data-driven process structures. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 181–192. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 131–149. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  11. 11.
    Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specification. IBM Syst. J. 42(3), 428–445 (2003)CrossRefGoogle Scholar
  12. 12.
    Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering, vol. 10. Springer, Heidelberg (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems: Challenges, Methods, Technologies. Springer, Berlin (2012) CrossRefGoogle Scholar
  14. 14.
    Schnieders, A., Puhlmann, F.: Variability mechanisms in e-business process families. BIS 85, 583–601 (2006)Google Scholar
  15. 15.
    Valença, G., Alves, C., Alves, V., Niu, N.: A systematic mapping study on BP variability. Int. J. Comput. Sci. Inf. Tech. 5(1) (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Riccardo Cognini
    • 1
    Email author
  • Flavio Corradini
    • 1
  • Andrea Polini
    • 1
  • Barbara Re
    • 1
  1. 1.University of CamerinoCamerinoItaly

Personalised recommendations