Machine Decision Makers as a Laboratory for Interactive EMO

  • Manuel López-Ibáñez
  • Joshua Knowles
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9019)


A key challenge, perhaps the central challenge, of multi-objective optimization is how to deal with candidate solutions that are ultimately evaluated by the hidden or unknown preferences of a human decision maker (DM) who understands and cares about the optimization problem. Alternative ways of addressing this challenge exist but perhaps the favoured one currently is the interactive approach (proposed in various forms). Here, an evolutionary multi-objective optimization algorithm (EMOA) is controlled by a series of interactions with the DM so that preferences can be elicited and the direction of search controlled. MCDM has a key role to play in designing and evaluating these approaches, particularly in testing them with real DMs, but so far quantitative assessment of interactive EMOAs has been limited. In this paper, we propose a conceptual framework for this problem of quantitative assessment, based on the definition of machine decision makers (machine DMs), made somewhat realistic by the incorporation of various non-idealities. The machine DM proposed here draws from earlier models of DM biases and inconsistencies in the MCDM literature. As a practical illustration of our approach, we use the proposed machine DM to study the performance of an interactive EMOA, and discuss how this framework could help in the evaluation and development of better interactive EMOAs.


Machine decision makers Artificial decision makers  MCDM Interactive EMO Performance assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auger, A., Brockhoff, D., López-Ibáñez, M., Miettinen, K., Naujoks, B., Rudolph, G.: Which questions should be asked to find the most appropriate method for decision making and problem solving? (Working Group "Algorithm Design Methods"). In: Greco et al. [12], pp. 50–99Google Scholar
  2. 2.
    Battiti, R., Passerini, A.: Brain-computer evolutionary multiobjective optimization: A genetic algorithm adapting to the decision maker. IEEE Transactions on Evolutionary Computation 14(5), 671–687 (2010)CrossRefGoogle Scholar
  3. 3.
    Branke, J.: Consideration of partial user preferences in evolutionary multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 157–178. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  4. 4.
    Branke, J., Greco, S., Słowiński, R., Zielniewicz, P.: Interactive evolutionary multiobjective optimization driven by robust ordinal regression. Bulletin of the Polish Academy of Sciences: Technical Sciences 58(3), 347–358 (2010)zbMATHGoogle Scholar
  5. 5.
    Brockhoff, D., López-Ibáñez, M., Naujoks, B., Rudolph, G.: Runtime analysis of simple interactive evolutionary biobjective optimization algorithms. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 123–132. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Buchanan, J.T.: An experimental evaluation of interactive MCDM methods and the decision making process. Journal of the Operational Research Society 45(9), 1050–1059 (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    Campigotto, P., Passerini, A.: Adapting to a realistic decision maker: experiments towards a reactive multi-objective optimizer. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 338–341. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Chaudhuri, S., Deb, K.: An interactive evolutionary multi-objective optimization and decision making procedure. Applied Soft Computing 10(2), 496–511 (2010)CrossRefGoogle Scholar
  9. 9.
    Coello Coello, C.A.: Handling preferences in evolutionary multiobjective optimization: a survey. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000), pp. 30–37. IEEE Press, Piscataway (July 2000)Google Scholar
  10. 10.
    Deb, K., Köksalan, M.: Guest editorial: Special issue on preference-based multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 14(5), 669–670 (2010)CrossRefGoogle Scholar
  11. 11.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)CrossRefGoogle Scholar
  12. 12.
    Greco, S., Knowles, J.D., Miettinen, K., Zitzler, E. (eds.): Learning in Multiobjective Optimization (Dagstuhl Seminar 12041), Dagstuhl Reports, 2(1). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Germany (2012)Google Scholar
  13. 13.
    Greco, S., Matarazzo, B., Słowiński, R.: Interactive evolutionary multiobjective optimization using dominance-based rough set approach. In: Ishibuchi, H., et al. (eds.) Proceedings of the 2010 Congress on Evolutionary Computation (CEC 2010), pp. 1–8. IEEE Press, Piscataway, NJ (2010)Google Scholar
  14. 14.
    Greenwood, G.W., Hu, X., D‘Ambrosio, J.G.: Fitness functions for multiple objective optimization problems: combining preferences with pareto rankings. In: Foundations of Genetic Algorithms (FOGA), pp. 437–455. Morgan Kaufmann Publishers, San Francisco (1996)Google Scholar
  15. 15.
    Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Econometrica 47(2), 263–291 (1979)CrossRefzbMATHGoogle Scholar
  16. 16.
    Köksalan, M., Karahan, I.: An interactive territory defining evolutionary algorithm: iTDEA. IEEE Transactions on Evolutionary Computation 14(5), 702–722 (2010)CrossRefGoogle Scholar
  17. 17.
    Kornbluth, J.: Sequential multi-criterion decision making. Omega 13(6), 569–574 (1985)CrossRefGoogle Scholar
  18. 18.
    López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6), 861–875 (2012)CrossRefGoogle Scholar
  19. 19.
    Morgan, P.D.: Simulation of an adaptive behavior mechanism in an expert decision-maker. IEEE Transactions on Systems, Man, and Cybernetics 23(1), 65–76 (1993)CrossRefzbMATHGoogle Scholar
  20. 20.
    Phelps, S., Köksalan, M.: An interactive evolutionary metaheuristic for multiobjective combinatorial optimization. Management Science 49(12), 1726–1738 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Purshouse, R.C., Deb, K., Mansor, M.M., Mostaghim, S., Wang, R.: A review of hybrid evolutionary multiple criteria decision making methods. COIN Report 2014005, Computational Optimization and Innovation (COIN) Laboratory, University of Michigan, USA (January 2014)Google Scholar
  22. 22.
    Stewart, T.J.: Robustness of additive value function methods in MCDM. Journal of Multi-Criteria Decision Analysis 5(4), 301–309 (1996)CrossRefzbMATHGoogle Scholar
  23. 23.
    Stewart, T.J.: Evaluation and refinement of aspiration-based methods in MCDM. European Journal of Operational Research 113(3), 643–652 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    Stewart, T.J.: Goal programming and cognitive biases in decision-making. Journal of the Operational Research Society 56(10), 1166–1175 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Viappiani, P., Faltings, B., Pu, P.: Preference-based search using example-critiquing with suggestions. Journal of Artificial Intelligence Research 27, 465–503 (2006)zbMATHGoogle Scholar
  26. 26.
    Viappiani, P., Pu, P., Faltings, B.: Preference-based search with adaptive recommendations. AI Communications 21(2), 155–175 (2008)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Wallenius, J.: Comparative evaluation of some interactive approaches to multicriterion optimization. Management Science 21(12), 1387–1396 (1975)CrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Transactions on Evolutionary Computation 17(4), 474–494 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IRIDIAUniversité Libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations