Advertisement

Using Indifference Information in Robust Ordinal Regression

  • Juergen Branke
  • Salvatore Corrente
  • Salvatore GrecoEmail author
  • Walter J. Gutjahr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9019)

Abstract

In this paper, we propose an extension to Robust Ordinal Regression allowing it to take into account also preference information from questions about indifference between real and fictitious alternatives. In particular, we allow the decision maker to suggest a new alternative that is different from the existing alternatives, but equally preferable. As shown by several experiments in psychology of the decisions, choosing between alternatives is different from matching two alternatives since the two aspects involve two different reasoning strategies. Consequently,by including this type of preference information one can represent more faithfully the DM’s preferences. Such information about indifference should narrow down the set of compatible value functions much more quickly than standard pairwise comparisons, and a first simple example at least indicates that this intuition seems to be correct.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Branke, J., Greco, S., Słowiński, R., Zielniewicz, P.: Interactive evolutionary multiobjective optimization using robust ordinal regression. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 554–568. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  2. 2.
    Branke, J., Greco, S., Słowiński, R., Zielniewicz, P.: Interactive evolutionary multiobjective optimization driven by robust ordinal regression. Bulletin of the Polish Academy of Sciences - Technical Sciences 58(3), 347–358 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Branke, J., Greco, S., Słowiński, R., Zielniewicz, P.: Learning value functions in interactive evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation (forthcoming)Google Scholar
  4. 4.
    Charnes, A., Cooper, W.W., Ferguson, R.O.: Optimal estimation of executive compensation by linear programming. Management Science 1(2), 138–151 (1955)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Corrente, S., Greco, S., Kadziński, M., Słowiński, R.: Robust ordinal regression in preference learning and ranking. Machine Learning 93, 381–422 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Corrente, S., Greco, S., Kadziński, M., Słowiński, R.: Robust ordinal regression. Wiley Enciclopedia of Operational Research (forthcoming)Google Scholar
  7. 7.
    Dyer, J.S.: MAUT – multiattribute utility theory. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 265–292. Springer, Berlin (2005)Google Scholar
  8. 8.
    Ehrgott, M., Figueira, J., Greco, S. (eds.): Trends in Multiple Criteria Decision Analysis. Springer, Berlin (2010)zbMATHGoogle Scholar
  9. 9.
    Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin (2005)Google Scholar
  10. 10.
    Figueira, J., Greco, S., Roy, B., Słowiński, R.: An overview of ELECTRE methods and their recent extensions. Journal of Multicriteria Decision Analysis 20(1–2), 61–65 (2013)CrossRefGoogle Scholar
  11. 11.
    Figueira, J., Greco, S., Słowiński, R.: Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. European Journal of Operational Research 195(2), 460–486 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Figueira, J., Mousseau, V., Roy, B.: ELECTRE methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 133–153. Springer, Berlin (2005)CrossRefGoogle Scholar
  13. 13.
    Giarlotta, A., Greco, S.: Necessary and possible preference structures. Journal of Mathematical Economics 49(2), 163–172 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Greco, S., Matarazzo, B., Słowiński, R.: Decision rule approach. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 507–562. Springer, Berlin (2005)Google Scholar
  16. 16.
    Greco, S., Mousseau, V., Słowiński, R.: Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. European Journal of Operational Research 191(2), 416–436 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Jacquet-Lagrèze, E., Siskos, J.: Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research 10(2), 151–164 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Jacquet-Lagrèze, E., Siskos, Y.: Preference disaggregation: 20 years of MCDA experience. European Journal of Operational Research 130(2), 233–245 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Keeney, R.L., Raiffa, H.: Decisions with multiple objectives: Preferences and value tradeoffs. J. Wiley, New York (1993)CrossRefGoogle Scholar
  20. 20.
    Mousseau, V., Figueira, J., Dias, L., Gomes da Silva, C., Climaco, J.: Resolving inconsistencies among constraints on the parameters of an MCDA model. European Journal of Operational Research 147(1), 72–93 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Mousseau, V., Słowiński, R.: Inferring an ELECTRE TRI model from assignment examples. Journal of Global Optimization 12(2), 157–174 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Mousseau, V., Słowiński, R., Zielniewicz, P.: A user–oriented implementation of the ELECTRE-TRI method integrating preference elicitation support. Computers & Operations Research 27(7–8), 757–777 (2000)CrossRefzbMATHGoogle Scholar
  23. 23.
    Pekelman, D., Sen, S.K.: Mathematical programming models for the determination of attribute weights. Management Science 20(8), 1217–1229 (1974)CrossRefzbMATHGoogle Scholar
  24. 24.
    Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    Slovic, P.: Choice between equally valued alternatives. Journal of Experimental Psychology: Human Perception and Performance 1(3), 280 (1975)Google Scholar
  26. 26.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough sets in decision making. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7753–7786. Springer, New York (2009)Google Scholar
  27. 27.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough Set and Rule-based Multicriteria Decision Aiding. Pesquisa Operacional 32(2), 213–269 (2012)CrossRefGoogle Scholar
  28. 28.
    Srinivasan, V., Shocker, A.D.: Estimating the weights for multiple attributes in a composite criterion using pairwise judgments. Psychometrika 38(4), 473–493 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Tversky, A., Sattath, S., Slovic, P.: Contingent weighting in judgment and choice. Psychological Review 95(3), 371 (1988)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Juergen Branke
    • 1
  • Salvatore Corrente
    • 2
  • Salvatore Greco
    • 2
    • 3
    Email author
  • Walter J. Gutjahr
    • 4
  1. 1.Warwick Business SchoolThe University of WarwickCoventryUK
  2. 2.Department of Economics and BusinessUniversity of CataniaCataniaItaly
  3. 3.Portsmouth Business School, Centre of Operations Research and Logistics (CORL)University of PortsmouthPortsmouthUK
  4. 4.Department of Statistics and Operations ResearchUniversity of ViennaWienAustria

Personalised recommendations