Advertisement

Elite Accumulative Sampling Strategies for Noisy Multi-objective Optimisation

  • Jonathan E. FieldsendEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9019)

Abstract

When designing evolutionary algorithms one of the key concerns is the balance between expending function evaluations on exploration versus exploitation. When the optimisation problem experiences observational noise, there is also a trade-off with respect to accuracy refinement – as improving the estimate of a design’s performance typically is at the cost of additional function reevaluations. Empirically the most effective resampling approach developed so far is accumulative resampling of the elite set. In this approach elite members are regularly reevaluated, meaning they progressively accumulate reevaluations over time. This results in their approximated objective values having greater fidelity, meaning non-dominated solutions are more likely to be correctly identified. Here we examine four different approaches to accumulative resampling of elite members, embedded within a differential evolution algorithm. Comparing results on 40 variants of the unconstrained IEEE CEC’09 multi-objective test problems, we find that at low noise levels a low fixed resample rate is usually sufficient, however for larger noise magnitudes progressively raising the number of minimum resamples of elite members based on detecting estimated front oscillation tends to improve performance.

Keywords

Pareto optimality Differential evolution Uncertainty Noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basseur, M., Zitzler, E.: A preliminary study on handling uncertainty in indicator-based multiobjective optimization. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 727–739. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  2. 2.
    Büche, D., Stoll, P., Dornberger, R., Koumoutsakos, P.: Multiobjective evolutionary algorithm for optimization of noisy combustion processes. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 32(4), 460–473 (2002)CrossRefGoogle Scholar
  3. 3.
    Bui, L., Abbass, H., Essam, D.: Fitness inheritance for noisy evolutionary multi-objective optimization. In: Proceeding of the Genetic and Evolutionary Computation Conference, pp. 779–785 (2005)Google Scholar
  4. 4.
    Das, S., Konar, A., Chakraborty, U.K.: Improved differential evolution algorithms for handling noisy optimization problems. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1691–1698. IEEE (2005)Google Scholar
  5. 5.
    Di Pietro, A., While, L., Barone, L.: Applying Evolutionary Algorithms to Problems with Noisy, Time-consuming Fitness Functions. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1254–1261. IEEE (2004)Google Scholar
  6. 6.
    Eskandari, H., Geiger, C.D.: Evolutionary multiobjective optimization in noisy problem environments. Journal of Heuristics 15, 559–595 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fieldsend, J.E., Everson, R.M.: Efficiently identifying pareto solutions when objective values change. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 605–612. ACM (2014)Google Scholar
  8. 8.
    Fieldsend, J.E., Everson, R.M.: Multi-objective optimisation in the presence of uncertainty. In: IEEE Congress on Evolutionary Computation, pp. 243–250 (2005)Google Scholar
  9. 9.
    Fieldsend, J.E., Everson, R.M.: On the efficient use of uncertainty when performing expensive ROC optimisation. In: IEEE Congress on Evolutionary Computation, pp. 3984–3991 (2008)Google Scholar
  10. 10.
    Fieldsend, J.E., Everson, R.M.: The Rolling Tide Evolutionary Algorithm: A Multi-Objective Optimiser for Noisy Optimisation Problems. IEEE Transactions on Evolutionary Computation (in press). http://dx.doi.org/10.1109/TEVC.2014.2304415
  11. 11.
    Fieldsend, J.E., Everson, R.M., Singh, S.: Using unconstrained elite archives for multi-objective optimisation. IEEE Transactions on Evolutionary Computation 7, 305–323 (2001)CrossRefGoogle Scholar
  12. 12.
    Goh, C.-K., Tan, K.C.: An investigation on noisy environments in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 11(3), 354–381 (2007)CrossRefGoogle Scholar
  13. 13.
    Goh, C.-K., Tan, K.C.: Evolutionary Multi-objective Optimization in Uncertain Environments. SCI, vol. 186. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Hanne, T.: On the convergence of multi objective evolutionary algorithms. European Journal of Operational Research 117, 553–564 (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Horn, J., Nafpliotis, N.: Multiobjective Optimization Using the Niched Pareto Genetic Algorithm. Technical Report 93005, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign (1993)Google Scholar
  16. 16.
    Hughes, E.J.: Constraint handling with uncertain and noisy multi-objective evolution. In: IEEE Congress on Evolutionary Computation, pp. 963–970 (2001)Google Scholar
  17. 17.
    Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  18. 18.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)CrossRefGoogle Scholar
  19. 19.
    Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical Report 214, Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland (2006)Google Scholar
  20. 20.
    Park, T., Ryu, K.R.: Accumulative sampling for noisy evolutionary multi-objective optimization. In: Proceeding of the Genetic and Evolutionary Computation Conference, pp. 793–800 (2011)Google Scholar
  21. 21.
    Robič, T., Filipič, B.: DEMO: Differential evolution for multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  22. 22.
    Schutze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation 16(4), 504–522 (2012)CrossRefGoogle Scholar
  23. 23.
    Shim, V.A., Tan, K.C., Chia, J.Y., Al Mamun, A.: Multi-objective Optimization with Estimation of Distribution Algorithm in a Noisy Environment. Evolutionary Computation 21(1), 149–177 (2013)CrossRefGoogle Scholar
  24. 24.
    Siegmund, F.: Sequential sampling in noisy multi-objective evolutionary optimization. Master’s thesis, University of Skövde, School of Humanities and Informatics, Sweden (2009)Google Scholar
  25. 25.
    Siegmund, F., Ng, A., Deb, K.: A comparative study of dynamic resampling strategies for guided evolutionary multi-objective optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1826–1835. IEEE (2013)Google Scholar
  26. 26.
    Syberfeldt, A., Ng, A., John, R.I., Moore, P.: Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling. European Journal of Operational Research 204, 533–544 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  28. 28.
    van Veldhuizen, D., Lamont, G.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation 8(2), 125–147 (2000)CrossRefGoogle Scholar
  29. 29.
    Villa, C., Lozinguez, E., Labayrade, R.: Multi-objective optimization under uncertain objectives: application to engineering design problem. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 796–810. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  30. 30.
    Yang, S., Ong, Y.S., Jin, Y.: Evolutionary computation in dynamic and uncertain environments. SCI, vol. 51. Springer, Heidelberg (2007)Google Scholar
  31. 31.
    Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition. Technical Report CES-487, School of Computer Science and Electronic Engineering, University of Essex, UK, April 2009Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Computer ScienceUniversity of ExeterExeterUK

Personalised recommendations